Approaches to Fairness in Machine Learning with Richard Zemel - TWiML Talk #209

Approaches to Fairness in Machine Learning with Richard Zemel - TWiML Talk #209

Today we continue our exploration of Trust in AI with this interview with Richard Zemel, Professor in the department of Computer Science at the University of Toronto and Research Director at Vector Institute. In our conversation, Rich describes some of his work on fairness in machine learning algorithms, including how he defines both group and individual fairness and his group’s recent NeurIPS poster, “Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer.”

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
et-sa-noin-voi-sanoo-esittaa
rss-vaalirankkurit-podcast
rss-podme-livebox
politbyroo
otetaan-yhdet
aihe
rikosmyytit
rss-terveisia-seelannista
radio-antro
rss-50100-podcast
rss-kuka-mina-olen
rss-raha-talous-ja-politiikka
rss-sanna-ukkola-show-verkkouutiset
rss-tasta-on-kyse-ivan-puopolo-verkkouutiset