[MINI] Markov Chains
Data Skeptic20 Maalis 2015

[MINI] Markov Chains

This episode introduces the idea of a Markov Chain. A Markov Chain has a set of states describing a particular system, and a probability of moving from one state to another along every valid connected state. Markov Chains are memoryless, meaning they don't rely on a long history of previous observations. The current state of a system depends only on the previous state and the results of a random outcome.

Markov Chains are a useful way method for describing non-deterministic systems. They are useful for destribing the state and transition model of a stochastic system.

As examples of Markov Chains, we discuss stop light signals, bowling, and text prediction systems in light of whether or not they can be described with Markov Chains.

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
utelias-mieli
tiedekulma-podcast
rss-poliisin-mieli
rss-lihavuudesta-podcast
rss-duodecim-lehti
rss-lapsuuden-rakentajat-podcast
hippokrateen-vastaanotolla
rss-tiedetta-vai-tarinaa
docemilia
rss-ammamafia
rss-radplus
rss-kasvatuspsykologiaa-kaikille
rss-totta-vai-tuubaa
rss-yleislaakarin-sydanaanet
rss-taivaanranta
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita