Approaches to Fairness in Machine Learning with Richard Zemel - TWiML Talk #209

Approaches to Fairness in Machine Learning with Richard Zemel - TWiML Talk #209

Today we continue our exploration of Trust in AI with this interview with Richard Zemel, Professor in the department of Computer Science at the University of Toronto and Research Director at Vector Institute. In our conversation, Rich describes some of his work on fairness in machine learning algorithms, including how he defines both group and individual fairness and his group’s recent NeurIPS poster, “Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer.”

Populärt inom Politik & nyheter

aftonbladet-krim
svenska-fall
motiv
p3-krim
fordomspodden
rss-krimstad
flashback-forever
rss-viva-fotboll
blenda-2
rss-sanning-konsekvens
aftonbladet-daily
rss-vad-fan-hande
svd-nyhetsartiklar
rss-frandfors-horna
rss-krimreportrarna
krimmagasinet
dagens-eko
olyckan-inifran
rss-flodet
rss-expressen-dok