High-Dimensional Robust Statistics with Ilias Diakonikolas - #351

High-Dimensional Robust Statistics with Ilias Diakonikolas - #351

Today we’re joined by Ilias Diakonikolas, faculty in the CS department at the University of Wisconsin-Madison, and author of the paper Distribution-Independent PAC Learning of Halfspaces with Massart Noise, recipient of the NeurIPS 2019 Outstanding Paper award. The paper is regarded as the first progress made around distribution-independent learning with noise since the 80s. In our conversation, we explore robustness in ML, problems with corrupt data in high-dimensional settings, and of course, the paper.

Suosittua kategoriassa Politiikka ja uutiset

aikalisa
rss-ootsa-kuullut-tasta
ootsa-kuullut-tasta-2
rss-podme-livebox
politiikan-puskaradio
rss-vaalirankkurit-podcast
otetaan-yhdet
the-ulkopolitist
rss-raha-talous-ja-politiikka
et-sa-noin-voi-sanoo-esittaa
linda-maria
rss-mina-ukkola
rss-hyvaa-huomenta-bryssel
rikosmyytit
rss-pallo-keskelle-2
rss-sinivalkoinen-islam
rss-kaikki-uusiksi
rss-kuka-mina-olen