A Universal Law of Robustness via Isoperimetry with Sebastien Bubeck - #551

A Universal Law of Robustness via Isoperimetry with Sebastien Bubeck - #551

Today we’re joined by Sebastian Bubeck a sr principal research manager at Microsoft, and author of the paper A Universal Law of Robustness via Isoperimetry, a NeurIPS 2021 Outstanding Paper Award recipient. We begin our conversation with Sebastian with a bit of a primer on convex optimization, a topic that hasn’t come up much in previous interviews. We explore the problem that convex optimization is trying to solve, the application of convex optimization to multi-armed bandit problems, metrical task systems and solving the K-server problem. We then dig into Sebastian’s paper, which looks to prove that for a broad class of data distributions and model classes, overparameterization is necessary if one wants to interpolate the data. Finally, we discussed the relationship between the paper and the work being done in the adversarial robustness community. The complete show notes for this episode can be found at twimlai.com/go/551

Suosittua kategoriassa Politiikka ja uutiset

aikalisa
tervo-halme
rss-ootsa-kuullut-tasta
ootsa-kuullut-tasta-2
politiikan-puskaradio
viisupodi
rss-vaalirankkurit-podcast
otetaan-yhdet
et-sa-noin-voi-sanoo-esittaa
rss-podme-livebox
io-techin-tekniikkapodcast
linda-maria
rikosmyytit
rss-tasta-on-kyse-ivan-puopolo-verkkouutiset
rss-asiastudio
the-ulkopolitist
rss-uusi-juttu
rss-fi-lainsaadanto-paremmaksi
rss-hyvaa-huomenta-bryssel
rss-50100-podcast