Solving the Cocktail Party Problem with Machine Learning, w/ ‪Jonathan Le Roux - #555

Solving the Cocktail Party Problem with Machine Learning, w/ ‪Jonathan Le Roux - #555

Today we’re joined by Jonathan Le Roux, a senior principal research scientist at Mitsubishi Electric Research Laboratories (MERL). At MERL, Jonathan and his team are focused on using machine learning to solve the “cocktail party problem”, focusing on not only the separation of speech from noise, but also the separation of speech from speech. In our conversation with Jonathan, we focus on his paper The Cocktail Fork Problem: Three-Stem Audio Separation For Real-World Soundtracks, which looks to separate and enhance a complex acoustic scene into three distinct categories, speech, music, and sound effects. We explore the challenges of working with such noisy data, the model architecture used to solve this problem, how ML/DL fits into solving the larger cocktail party problem, future directions for this line of research, and much more! The complete show notes for this episode can be found at twimlai.com/go/555

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
et-sa-noin-voi-sanoo-esittaa
rss-podme-livebox
politbyroo
rss-vaalirankkurit-podcast
otetaan-yhdet
rikosmyytit
rss-raha-talous-ja-politiikka
rss-terveisia-seelannista
aihe
linda-maria
radio-antro
rss-mina-ukkola
rss-50100-podcast
rss-sanna-ukkola-show-verkkouutiset
rss-tasta-on-kyse-ivan-puopolo-verkkouutiset