Language Modeling With State Space Models with Dan Fu - #630

Language Modeling With State Space Models with Dan Fu - #630

Today we’re joined by Dan Fu, a PhD student at Stanford University. In our conversation with Dan, we discuss the limitations of state space models in language modeling and the search for alternative building blocks that can help increase context length without being computationally infeasible. Dan walks us through the H3 architecture and Flash Attention technique, which can reduce the memory footprint of a model and make it feasible to fine-tune. We also explore his work on improving language models using synthetic languages, the issue of long sequence length affecting both training and inference in models, and the hope for finding something sub-quadratic that can perform language processing more effectively than the brute force approach of attention. The complete show notes for this episode can be found at https://twimlai.com/go/630

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
otetaan-yhdet
et-sa-noin-voi-sanoo-esittaa
rss-podme-livebox
viisupodi
politbyroo
rss-vaalirankkurit-podcast
linda-maria
rss-kuka-mina-olen
rss-raha-talous-ja-politiikka
the-ulkopolitist
rss-hyvaa-huomenta-bryssel
radio-antro
rss-lets-talk-about-hair
rss-mina-ukkola
rss-tasta-on-kyse-ivan-puopolo-verkkouutiset