Learning Transformer Programs with Dan Friedman - #667

Learning Transformer Programs with Dan Friedman - #667

Today, we continue our NeurIPS series with Dan Friedman, a PhD student in the Princeton NLP group. In our conversation, we explore his research on mechanistic interpretability for transformer models, specifically his paper, Learning Transformer Programs. The LTP paper proposes modifications to the transformer architecture which allow transformer models to be easily converted into human-readable programs, making them inherently interpretable. In our conversation, we compare the approach proposed by this research with prior approaches to understanding the models and their shortcomings. We also dig into the approach’s function and scale limitations and constraints. The complete show notes for this episode can be found at twimlai.com/go/667.

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
rss-podme-livebox
et-sa-noin-voi-sanoo-esittaa
rss-vaalirankkurit-podcast
otetaan-yhdet
politbyroo
aihe
rikosmyytit
rss-terveisia-seelannista
radio-antro
rss-lets-talk-about-hair
rss-50100-podcast
rss-kuka-mina-olen
rss-sanna-ukkola-show-verkkouutiset
rss-tasta-on-kyse-ivan-puopolo-verkkouutiset