Controlling Fusion Reactor Instability with Deep Reinforcement Learning with Aza Jalalvand - #682

Controlling Fusion Reactor Instability with Deep Reinforcement Learning with Aza Jalalvand - #682

Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production. The complete show notes for this episode can be found at twimlai.com/go/682.

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
ootsa-kuullut-tasta-2
aikalisa
rss-podme-livebox
politiikan-puskaradio
rss-vaalirankkurit-podcast
et-sa-noin-voi-sanoo-esittaa
otetaan-yhdet
rikosmyytit
linda-maria
rss-hyvaa-huomenta-bryssel
the-ulkopolitist
rss-kaikki-uusiksi
rss-raha-talous-ja-politiikka
rss-sinivalkoinen-islam
rss-mina-ukkola
politbyroo
rss-pallo-keskelle-2
rss-merja-mahkan-rahat
rss-terveisia-seelannista