[MINI] Exponential Time Algorithms
Data Skeptic24 Marras 2017

[MINI] Exponential Time Algorithms

In this episode we discuss the complexity class of EXP-Time which contains algorithms which require $O(2^{p(n)})$ time to run. In other words, the worst case runtime is exponential in some polynomial of the input size. Problems in this class are even more difficult than problems in NP since you can't even verify a solution in polynomial time.

We mostly discuss Generalized Chess as an intuitive example of a problem in EXP-Time. Another well-known problem is determining if a given algorithm will halt in k steps. That extra condition of restricting it to k steps makes this problem distinct from Turing's original definition of the halting problem which is known to be intractable.

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
tiedekulma-podcast
utelias-mieli
hippokrateen-vastaanotolla
docemilia
rss-poliisin-mieli
rss-lihavuudesta-podcast
sotataidon-ytimessa
filocast-filosofian-perusteet
rss-duodecim-lehti
radio-antro
menologeja-tutkimusmatka-vaihdevuosiin
rss-ammamafia
rss-ilmasto-kriisissa
vinkista-vihia
rss-ranskaa-raakana
rss-laakaripodi
rss-tiedetta-vai-tarinaa
rss-jyvaskylan-yliopisto
rss-pandapodi