[MINI] Max-pooling
Data Skeptic2 Kesä 2017

[MINI] Max-pooling

Max-pooling is a procedure in a neural network which has several benefits. It performs dimensionality reduction by taking a collection of neurons and reducing them to a single value for future layers to receive as input. It can also prevent overfitting, since it takes a large set of inputs and admits only one value, making it harder to memorize the input. In this episode, we discuss the intuitive interpretation of max-pooling and why it's more common than mean-pooling or (theoretically) quartile-pooling.

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
utelias-mieli
tiedekulma-podcast
hippokrateen-vastaanotolla
docemilia
rss-lihavuudesta-podcast
filocast-filosofian-perusteet
rss-poliisin-mieli
rss-duodecim-lehti
rss-ammamafia
sotataidon-ytimessa
menologeja-tutkimusmatka-vaihdevuosiin
vinkista-vihia
radio-antro
rss-ranskaa-raakana
rss-tiedetta-vai-tarinaa
rss-ilmasto-kriisissa
rss-jyvaskylan-yliopisto
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita