[MINI] Feed Forward Neural Networks
Data Skeptic24 Maalis 2017

[MINI] Feed Forward Neural Networks

Feed Forward Neural Networks

In a feed forward neural network, neurons cannot form a cycle. In this episode, we explore how such a network would be able to represent three common logical operators: OR, AND, and XOR. The XOR operation is the interesting case.

Below are the truth tables that describe each of these functions.

AND Truth Table Input 1 Input 2 Output 0 0 0 0 1 0 1 0 0 1 1 1 OR Truth Table Input 1 Input 2 Output 0 0 0 0 1 1 1 0 1 1 1 1 XOR Truth Table Input 1 Input 2 Output 0 0 0 0 1 1 1 0 1 1 1 0

The AND and OR functions should seem very intuitive. Exclusive or (XOR) if true if and only if exactly single input is 1. Could a neural network learn these mathematical functions?

Let's consider the perceptron described below. First we see the visual representation, then the Activation function , followed by the formula for calculating the output.

Can this perceptron learn the AND function?

Sure. Let and

What about OR?

Yup. Let and

An infinite number of possible solutions exist, I just picked values that hopefully seem intuitive. This is also a good example of why the bias term is important. Without it, the AND function could not be represented.

How about XOR?

No. It is not possible to represent XOR with a single layer. It requires two layers. The image below shows how it could be done with two laters.

In the above example, the weights computed for the middle hidden node capture the essence of why this works. This node activates when recieving two positive inputs, thus contributing a heavy penalty to be summed by the output node. If a single input is 1, this node will not activate.

Universal approximation theorem tells us that any continuous function can be tightly approximated using a neural network with only a single hidden layer and a finite number of neurons. With this in mind, a feed forward neural network should be adaquet for any applications. However, in practice, other network architectures and the allowance of more hidden layers are empirically motivated.

Other types neural networks have less strict structal definitions. The various ways one might relax this constraint generate other classes of neural networks that often have interesting properties. We'll get into some of these in future mini-episodes.

Check out our recent blog post on how we're using Periscope Data cohort charts.

Thanks to Periscope Data for sponsoring this episode. More about them at periscopedata.com/skeptics

Jaksot(588)

Shilling Attacks on Recommender Systems

Shilling Attacks on Recommender Systems

In this episode of Data Skeptic's Recommender Systems series, Kyle sits down with Aditya Chichani, a senior machine learning engineer at Walmart, to explore the darker side of recommendation algorithms. The conversation centers on shilling attacks—a form of manipulation where malicious actors create multiple fake profiles to game recommender systems, either to promote specific items or sabotage competitors. Aditya, who researched these attacks during his undergraduate studies at SPIT before completing his master's in computer science with a data science specialization at UC Berkeley, explains how these vulnerabilities emerge particularly in collaborative filtering systems. From promoting a friend's ska band on Spotify to inflating product ratings on e-commerce platforms, shilling attacks represent a significant threat in an industry where approximately 4% of reviews are fake, translating to $800 billion in annual sales in the US alone. The discussion delves deep into collaborative filtering, explaining both user-user and item-item approaches that create similarity matrices to predict user preferences. However, these systems face various shilling attacks of increasing sophistication: random attacks use minimal information with average ratings, while segmented attacks strategically target popular items (like Taylor Swift albums) to build credibility before promoting target items. Bandwagon attacks focus on highly popular items to connect with genuine users, and average attacks leverage item rating knowledge to appear authentic. User-user collaborative filtering proves particularly vulnerable, requiring as few as 500 fake profiles to impact recommendations, while item-item filtering demands significantly more resources. Aditya addresses detection through machine learning techniques that analyze behavioral patterns using methods like PCA to identify profiles with unusually high correlation and suspicious rating consistency. However, this remains an evolving challenge as attackers adapt strategies, now using large language models to generate more authentic-seeming fake reviews. His research with the MovieLens dataset tested detection algorithms against synthetic attacks, highlighting how these concerns extend to modern e-commerce systems. While companies rarely share attack and detection data publicly to avoid giving attackers advantages, academic research continues advancing both offensive and defensive strategies in recommender systems security.

5 Marras 34min

Music Playlist Recommendations

Music Playlist Recommendations

In this episode, Rebecca Salganik, a PhD student at the University of Rochester with a background in vocal performance and composition, discusses her research on fairness in music recommendation systems. She explores three key types of fairness—group, individual, and counterfactual—and examines how algorithms create challenges like popularity bias (favoring mainstream content) and multi-interest bias (underserving users with diverse tastes). Rebecca introduces LARP, her multi-stage multimodal framework for playlist continuation that uses contrastive learning to align text and audio representations, learn song relationships, and create playlist-level embeddings to address the cold start problem. A significant contribution of Rebecca's work is the Music Semantics dataset, created by scraping Reddit discussions to capture how people naturally describe music using atmospheric qualities, contextual comparisons, and situational associations rather than just technical features. This dataset, available on Hugging Face, enables more nuanced recommendation systems that better understand user preferences and support niche tastes. Her research utilizes industry datasets including Last.fm and Spotify's Million Playlist Dataset, and points toward exciting future applications in music generation and multimodal systems that combine audio, text, and video.

29 Loka 52min

Bypassing the Popularity Bias

Bypassing the Popularity Bias

15 Loka 34min

Sustainable Recommender Systems for Tourism

Sustainable Recommender Systems for Tourism

In this episode, we speak with Ashmi Banerjee, a doctoral candidate at the Technical University of Munich, about her pioneering research on AI-powered recommender systems in tourism. Ashmi illuminates how these systems can address exposure bias while promoting more sustainable tourism practices through innovative approaches to data acquisition and algorithm design. Key highlights include leveraging large language models for synthetic data generation, developing recommendation architectures that balance user satisfaction with environmental concerns, and creating frameworks that distribute tourism more equitably across destinations. Ashmi's insights offer valuable perspectives for both AI researchers and tourism industry professionals seeking to implement more responsible recommendation technologies.

9 Loka 38min

Interpretable Real Estate Recommendations

Interpretable Real Estate Recommendations

In this episode of Data Skeptic's Recommender Systems series, host Kyle Polich interviews Dr. Kunal Mukherjee, a postdoctoral research associate at Virginia Tech, about the paper "Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations" The discussion explores how the post-COVID real estate landscape has created a need for better recommendation systems that can introduce home buyers to emerging neighborhoods they might not know about. Dr. Mukherjee, explains how his team developed a graph neural network approach that not only recommends properties but provides human-interpretable explanations for why certain regions are suggested. The conversation covers the advantages of using graph-based models over traditional recommendation systems, the importance of regional context in real estate features, and how co-click data from similar users can create more effective recommendations. Key topics include the distinction between model developer explanations and end-user explanations, the challenges of feature perturbation in recommendation systems, and how graph neural networks can discover novel pathways to emerging real estate markets that traditional models might miss.

22 Syys 32min

Why Am I Seeing This?

Why Am I Seeing This?

In this episode of Data Skeptic, we explore the challenges of studying social media recommender systems when exposure data isn't accessible. Our guests Sabrina Guidotti, Gregor Donabauer, and Dimitri Ognibene introduce their innovative "recommender neutral user model" for inferring the influence of opaque algorithms.

8 Syys 49min

Eco-aware GNN Recommenders

Eco-aware GNN Recommenders

In this episode of Data Skeptic, we dive into eco-friendly AI with Antonio Purificato, a PhD student from Sapienza University of Rome. Antonio discusses his research on "EcoAware Graph Neural Networks for Sustainable Recommendations" and explores how we can measure and reduce the environmental impact of recommender systems without sacrificing performance.

30 Elo 44min

Networks and Recommender Systems

Networks and Recommender Systems

Kyle reveals the next season's topic will be "Recommender Systems". Asaf shares insights on how network science contributes to the recommender system field.

17 Elo 17min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
utelias-mieli
tiedekulma-podcast
hippokrateen-vastaanotolla
docemilia
rss-lihavuudesta-podcast
filocast-filosofian-perusteet
rss-poliisin-mieli
rss-duodecim-lehti
rss-ammamafia
sotataidon-ytimessa
menologeja-tutkimusmatka-vaihdevuosiin
vinkista-vihia
radio-antro
rss-ranskaa-raakana
rss-tiedetta-vai-tarinaa
rss-ilmasto-kriisissa
rss-jyvaskylan-yliopisto
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita