Exploratory Data Analysis (EDA) in Machine Learning - ML 075

Exploratory Data Analysis (EDA) in Machine Learning - ML 075

EDA is primarily used in machine learning to see what data can reveal beyond the formal modeling or hypothesis testing task and provides a better understanding of data set variables and the relationships between them. It can also help determine if the statistical techniques you are considering for data analysis are appropriate. Today on the show, Ben and Michael discuss how to use EDA in machine learning models.

In this episode...

  1. What is EDA?
  2. Tips and Tricks and steps for EDA
  3. How to approach downsampling
  4. Understanding feature sets relative to your labels
  5. Optimizing models
  6. Motivating yourself to get into the data
  7. Tools for EDA
  8. A few scenarios for discussion
  9. What is the most detrimental EDA mistake for ML

Sponsors



Advertising Inquiries: https://redcircle.com/brands

Privacy & Opt-Out: https://redcircle.com/privacy

Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.

Suosittua kategoriassa Liike-elämä ja talous

sijotuskasti
mimmit-sijoittaa
psykopodiaa-podcast
rss-rahapodi
ostan-asuntoja-podcast
oppimisen-psykologia
pomojen-suusta
taloudellinen-mielenrauha
rss-lahtijat
kasvun-kipuja
sijoituspodi
rss-seuraava-potilas
rss-h-asselmoilanen
rss-merja-mahkan-rahat
rss-viisas-raha-podi
rahapuhetta
rss-uskalla-yrittaa
rss-laakispodi
rss-farmapodi
rss-rikasta-elamaa