Using RICC-Seq to Probe Short Range Chromatin Folding (Viviana Risca)
Epigenetics Podcast13 Maalis 2025

Using RICC-Seq to Probe Short Range Chromatin Folding (Viviana Risca)

In this episode of the Epigenetics Podcast, we talked with Viviana Risca from Rockefeller University about her work on RICC-Seq and how it's used to probe DNA-DNA contacts in intact or fixed cells using ionizing radiation.

This Interview covers Dr. Viviana Risca's cutting-edge methodologies, such as RICC-seq, which enables high-resolution analysis of chromatin structures without traditional cross-linking biases. We engage in a detailed discussion about how different techniques, such as RICC-seq and Micro-C, complement each other to provide robust insights into nucleosome interactions and chromatin dynamics. Dr. Risca articulates the challenges and innovations within her lab as it navigates through the complexities of chromatin mapping.

The episode takes an exciting turn toward traversing the landscape of her future research directions, particularly studying the role of linker histones and other chromatin architectural proteins in regulating gene expression. Dr. Risca emphasizes the importance of understanding chromatin's mechanical properties and how these influence cellular processes like transcriptional regulation, DNA replication, and cellular responses to damage.

We also explore her collaborative work that bridges the gap between basic research and clinical applications, particularly in cancer therapy. Dr. Risca shares insights into her investigations into how chromatin dynamics change during cell cycle arrest and their implications for cancer therapy resistance. Our discussion culminates in her reflections on the definition of epigenetics, framing it as the exploration of how cellular mechanisms encode and process information.

References
  • Risca VI, Denny SK, Straight AF, Greenleaf WJ. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature. 2017 Jan 12;541(7636):237-241. doi: 10.1038/nature20781. Epub 2016 Dec 26. PMID: 28024297; PMCID: PMC5526328.

  • Soroczynski J, Anderson LJ, Yeung JL, Rendleman JM, Oren DA, Konishi HA, Risca VI. OpenTn5: Open-Source Resource for Robust and Scalable Tn5 Transposase Purification and Characterization. bioRxiv [Preprint]. 2024 Jul 13:2024.07.11.602973. doi: 10.1101/2024.07.11.602973. PMID: 39026714; PMCID: PMC11257509.

  • Prescott, N. A., Biaco, T., Mansisidor, A., Bram, Y., Rendleman, J., Faulkner, S. C., Lemmon, A. A., Lim, C., Tiersky, R., Salataj, E., Garcia-Martinez, L., Borges, R. L., Morey, L., Hamard, P.-J., Koche, R. P., Risca, V. I., Schwartz, R. E., & David, Y. (2025). A nucleosome switch primes hepatitis B virus infection. Cell, S0092867425001023. https://doi.org/10.1016/j.cell.2025.01.033

Related Episodes

Contact

Jaksot(167)

Taking ChIP from Yeast to ENCODE to Enable Genome-Wide Regulatory Protein Mapping (Peggy Farnham)

Taking ChIP from Yeast to ENCODE to Enable Genome-Wide Regulatory Protein Mapping (Peggy Farnham)

In this episode of the Epigenetics Podcast, we talked with Peggy Farnham from the Keck School of Medicine at USC about her work on establishing the ChIP Method in mammalian cells. In this episode, we ...

29 Tammi 29min

Spatial-Omics and Machine Learning in Muscle Stem Cell Repair (Will Wang)

Spatial-Omics and Machine Learning in Muscle Stem Cell Repair (Will Wang)

In this episode of the Epigenetics Podcast, we talked with Will Wang from Sanford Burnham Prebys about his work on muscle stem cell repair, regeneration, and aging, exploring spatial-omics and machine...

15 Tammi 55min

The Future of Protein–DNA Mapping (Mitch Guttman)

The Future of Protein–DNA Mapping (Mitch Guttman)

In this episode of the Epigenetics Podcast, we talked with Mitch Guttman from Caltec about ChIP-DIP (ChIP-Done In Parallel). ChIP-DIP is a newly developed approach for high-resolution protein–DNA inte...

18 Joulu 20251h 2min

Chromatin Modifiers and Their Roles in Brain Development (Fides Zenk)

Chromatin Modifiers and Their Roles in Brain Development (Fides Zenk)

In this episode of the Epigenetics Podcast, we talked with Fides Zenk from the École polytechnique fédérale de Lausanne about her work on transgenerational inheritance in Drosophila and brain organoid...

4 Joulu 202528min

Region Capture Micro-C and 3D Genome Structure (Anders Sejr Hansen)

Region Capture Micro-C and 3D Genome Structure (Anders Sejr Hansen)

In this episode of the Epigenetics Podcast, we talked with Anders Sejr Hansen from MIT about his work on the impact of 3D genome structures on gene expression, the roles of proteins like CTCF and cohe...

13 Marras 20251h 3min

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

In this episode of the Epigenetics Podcast, we talked with Vincent Pasque from KU Leuven about his work on the reprogramming of cell identity through epigenetic mechanisms, particularly during early d...

30 Loka 202540min

The Impact of Chromatin Architecture on Alzheimer's and Parkinson's Disease (Ryan Corces)

The Impact of Chromatin Architecture on Alzheimer's and Parkinson's Disease (Ryan Corces)

In this episode of the Epigenetics Podcast, we talked with Ryan Corces from the Gladstone Institutes about his work on the impact of chromatin architecture on Alzheimer's and Parkinson's Disease. The...

16 Loka 202545min

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

In this episode of the Epigenetics Podcast, we talked with Mo Motamedi from the Center for Cancer Research at Massachusetts General Hospital about his work on RNA-mediated epigenetic regulation. The I...

2 Loka 202545min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
tiedekulma-podcast
rss-lihavuudesta-podcast
utelias-mieli
rss-duodecim-lehti
rss-laakaripodi
rss-opeklubi
docemilia
hippokrateen-vastaanotolla
mielipaivakirja
radio-antro
rss-mental-race
rss-ylistys-elaimille