Dataflow Computing for AI Inference with Kunle Olukotun - #751

Dataflow Computing for AI Inference with Kunle Olukotun - #751

In this episode, we're joined by Kunle Olukotun, professor of electrical engineering and computer science at Stanford University and co-founder and chief technologist at Sambanova Systems, to discuss reconfigurable dataflow architectures for AI inference. Kunle explains the core idea of building computers that are dynamically configured to match the dataflow graph of an AI model, moving beyond the traditional instruction-fetch paradigm of CPUs and GPUs. We explore how this architecture is well-suited for LLM inference, reducing memory bandwidth bottlenecks and improving performance. Kunle reviews how this system also enables efficient multi-model serving and agentic workflows through its large, tiered memory and fast model-switching capabilities. Finally, we discuss his research into future dynamic reconfigurable architectures, and the use of AI agents to build compilers for new hardware. The complete show notes for this episode can be found at https://twimlai.com/go/751.

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
rss-podme-livebox
otetaan-yhdet
rss-raha-talous-ja-politiikka
rikosmyytit
the-ulkopolitist
rss-vaalirankkurit-podcast
et-sa-noin-voi-sanoo-esittaa
rss-suomen-lehdiston-podcast
rss-polikulaari-humanisti-vastaa-ja-muut-ts-podcastit
linda-maria
viisupodi
radio-antro
rss-kovin-paikka
rss-kaikki-uusiksi
rss-50100-podcast