SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024
AI Today27 Nov 2024

SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024

Paper: https://arxiv.org/pdf/2411.11922 Github: https://github.com/yangchris11/samurai Blog: https://yangchris11.github.io/samurai/ The paper introduces SAMURAI, a novel visual object tracking method that enhances the Segment Anything Model 2 (SAM 2) for improved accuracy and robustness. SAMURAI addresses SAM 2's limitations in handling crowded scenes and occlusions by incorporating motion cues and a motion-aware memory selection mechanism. This allows SAMURAI to accurately track objects in real-time, even with rapid movement or self-occlusion, without requiring retraining. The method achieves state-of-the-art performance on various benchmarks, demonstrating its effectiveness and generalization capabilities. Code and results are publicly available. ai , computer vision , cv , university of washington , artificial intelligence , arxiv , research , paper , publication

Populärt inom Teknik

uppgang-och-fall
elbilsveckan
market-makers
rss-elektrikerpodden
bosse-bildoktorn-och-hasse-p
natets-morka-sida
bilar-med-sladd
rss-laddstationen-med-elbilen-i-sverige
skogsforum-podcast
rss-uppgang-och-fall
gubbar-som-tjotar-om-bilar
developers-mer-an-bara-kod
rss-veckans-ai
rss-technokratin
hej-bruksbil
bli-saker-podden
rss-it-sakerhetspodden
algoritmen
rss-heja-framtiden
rss-en-ai-till-kaffet