Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

In this episode of the Epigenetics Podcast, we talked with Emily Wong from the University of New South Wales in Sydney about her work on how evolution shapes mammalian genes.

As the head of the Regulatory Systems Lab at the Victor Chang Cardiac Research Institute and an associate professor at UNSW, Emily’s research centers on gene control and enhancers. We delve into her pivotal 2017 publication in Nature Communications, where she investigated transcription factor binding in liver-specific contexts, shedding light on the regulatory mechanisms at play in mammals.

Emily elaborates on her postdoctoral work at the European Bioinformatics Institute and the innovative hybrid systems she used to dissect genetic variation effects, which allowed her to differentiate between cis-regulatory and trans-regulatory influences. By employing techniques like ChIP-seq, she was able to illustrate the combinatorial effects of transcription factors on gene expression, paving the way for her collaborative efforts across disciplines and organisms.

We also examine Emily's findings regarding enhancer function through comparative studies between zebrafish and marine sponges. Using historical data on conserved genetic sequences, she and her team identified enhancer regions that displayed activity in specific vertebrate cell types, despite their evolutionary divergence from sponges. This unexpected result suggests deeper insights into how enhancers can be co-opted for new functions as species evolve.

Furthermore, we dive into Emily's latest ventures involving advanced methodologies such as chromatin accessibility profiling with ATAC-seq and how these insights can elucidate the genomic landscape of metazoan embryogenesis. She highlights significant correlations between enhancer turnover and DNA replication timing, suggesting evolutionary implications that should be taken into account in future genomic studies.

References
  • Wong, E. S., Zheng, D., Tan, S. Z., Bower, N. I., Garside, V., Vanwalleghem, G., Gaiti, F., Scott, E., Hogan, B. M., Kikuchi, K., McGlinn, E., Francois, M., & Degnan, B. M. (2020). Deep conservation of the enhancer regulatory code in animals. Science, 370(6517), eaax8137. https://doi.org/10.1126/science.aax8137

  • Cornejo-Páramo, P., Petrova, V., Zhang, X. et al. Emergence of enhancers at late DNA replicating regions. Nat Commun 15, 3451 (2024). https://doi.org/10.1038/s41467-024-47391-5

Related Episodes

Contact

Avsnitt(167)

Taking ChIP from Yeast to ENCODE to Enable Genome-Wide Regulatory Protein Mapping (Peggy Farnham)

Taking ChIP from Yeast to ENCODE to Enable Genome-Wide Regulatory Protein Mapping (Peggy Farnham)

In this episode of the Epigenetics Podcast, we talked with Peggy Farnham from the Keck School of Medicine at USC about her work on establishing the ChIP Method in mammalian cells. In this episode, we ...

29 Jan 29min

Spatial-Omics and Machine Learning in Muscle Stem Cell Repair (Will Wang)

Spatial-Omics and Machine Learning in Muscle Stem Cell Repair (Will Wang)

In this episode of the Epigenetics Podcast, we talked with Will Wang from Sanford Burnham Prebys about his work on muscle stem cell repair, regeneration, and aging, exploring spatial-omics and machine...

15 Jan 55min

The Future of Protein–DNA Mapping (Mitch Guttman)

The Future of Protein–DNA Mapping (Mitch Guttman)

In this episode of the Epigenetics Podcast, we talked with Mitch Guttman from Caltec about ChIP-DIP (ChIP-Done In Parallel). ChIP-DIP is a newly developed approach for high-resolution protein–DNA inte...

18 Dec 20251h 2min

Chromatin Modifiers and Their Roles in Brain Development (Fides Zenk)

Chromatin Modifiers and Their Roles in Brain Development (Fides Zenk)

In this episode of the Epigenetics Podcast, we talked with Fides Zenk from the École polytechnique fédérale de Lausanne about her work on transgenerational inheritance in Drosophila and brain organoid...

4 Dec 202528min

Region Capture Micro-C and 3D Genome Structure (Anders Sejr Hansen)

Region Capture Micro-C and 3D Genome Structure (Anders Sejr Hansen)

In this episode of the Epigenetics Podcast, we talked with Anders Sejr Hansen from MIT about his work on the impact of 3D genome structures on gene expression, the roles of proteins like CTCF and cohe...

13 Nov 20251h 3min

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

In this episode of the Epigenetics Podcast, we talked with Vincent Pasque from KU Leuven about his work on the reprogramming of cell identity through epigenetic mechanisms, particularly during early d...

30 Okt 202540min

The Impact of Chromatin Architecture on Alzheimer's and Parkinson's Disease (Ryan Corces)

The Impact of Chromatin Architecture on Alzheimer's and Parkinson's Disease (Ryan Corces)

In this episode of the Epigenetics Podcast, we talked with Ryan Corces from the Gladstone Institutes about his work on the impact of chromatin architecture on Alzheimer's and Parkinson's Disease. The...

16 Okt 202545min

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

In this episode of the Epigenetics Podcast, we talked with Mo Motamedi from the Center for Cancer Research at Massachusetts General Hospital about his work on RNA-mediated epigenetic regulation. The I...

2 Okt 202545min

Populärt inom Vetenskap

p3-dystopia
pojkmottagningen
svd-nyhetsartiklar
dumma-manniskor
allt-du-velat-veta
kapitalet-en-podd-om-ekonomi
det-morka-psyket
4health-med-anna-sparre
sexet
medicinvetarna
halsorevolutionen
rss-vetenskapsradion-2
rss-ufobortom-rimligt-tvivel-2
rss-vetenskapsradion
dumforklarat
rss-spraket
hacka-livet
paranormalt-med-caroline-giertz
bildningspodden
vetenskapsradion