How Deep Learning has Revolutionized OCR with Cha Zhang - #416

How Deep Learning has Revolutionized OCR with Cha Zhang - #416

Today we’re joined by Cha Zhang, a Partner Engineering Manager at Microsoft Cloud & AI. Cha’s work at MSFT is focused on exploring ways that new technologies can be applied to optical character recognition, or OCR, pushing the boundaries of what has been seen as an otherwise ‘solved’ problem. In our conversation with Cha, we explore some of the traditional challenges of doing OCR in the wild, and what are the ways in which deep learning algorithms are being applied to transform these solutions. We also discuss the difficulties of using an end to end pipeline for OCR work, if there is a semi-supervised framing that could be used for OCR, the role of techniques like neural architecture search, how advances in NLP could influence the advancement of OCR problems, and much more. The complete show notes for this episode can be found at twimlai.com/go/416.

Jaksot(775)

Watermarking Large Language Models to Fight Plagiarism with Tom Goldstein - 621

Watermarking Large Language Models to Fight Plagiarism with Tom Goldstein - 621

Today we’re joined by Tom Goldstein, an associate professor at the University of Maryland. Tom’s research sits at the intersection of ML and optimization and has previously been featured in the New Yorker for his work on invisibility cloaks, clothing that can evade object detection. In our conversation, we focus on his more recent research on watermarking LLM output. We explore the motivations behind adding these watermarks, how they work, and different ways a watermark could be deployed, as well as political and economic incentive structures around the adoption of watermarking and future directions for that line of work. We also discuss Tom’s research into data leakage, particularly in stable diffusion models, work that is analogous to recent guest Nicholas Carlini’s research into LLM data extraction.

20 Maalis 202351min

Does ChatGPT “Think”? A Cognitive Neuroscience Perspective with Anna Ivanova - #620

Does ChatGPT “Think”? A Cognitive Neuroscience Perspective with Anna Ivanova - #620

Today we’re joined by Anna Ivanova, a postdoctoral researcher at MIT Quest for Intelligence. In our conversation with Anna, we discuss her recent paper Dissociating language and thought in large language models: a cognitive perspective. In the paper, Anna reviews the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world. We explore parallels between linguistic competence and AGI, the need to identify new benchmarks for these models, whether an end-to-end trained LLM can address various aspects of functional competence, and much more!  The complete show notes for this episode can be found at twimlai.com/go/620.

13 Maalis 202345min

Robotic Dexterity and Collaboration with Monroe Kennedy III - #619

Robotic Dexterity and Collaboration with Monroe Kennedy III - #619

Today we’re joined by Monroe Kennedy III, an assistant professor at Stanford, director of the Assistive Robotics and Manipulation Lab, and a national director of Black in Robotics. In our conversation with Monroe, we spend some time exploring the robotics landscape, getting Monroe’s thoughts on the current challenges in the field, as well as his opinion on choreographed demonstrations like the dancing Boston Robotics machines. We also dig into his work around two distinct threads, Robotic Dexterity, (what does it take to make robots capable of doing manipulation useful tasks with and for humans?) and Collaborative Robotics (how do we go beyond advanced autonomy in robots towards making effective robotic teammates capable of working with human counterparts?). Finally, we discuss DenseTact, an optical-tactile sensor capable of visualizing the deformed surface of a soft fingertip and using that image in a neural network to perform calibrated shape reconstruction and 6-axis wrench estimation. The complete show notes for this episode can be found at twimlai.com/go/619.

6 Maalis 202352min

Privacy and Security for Stable Diffusion and LLMs with Nicholas Carlini - #618

Privacy and Security for Stable Diffusion and LLMs with Nicholas Carlini - #618

Today we’re joined by Nicholas Carlini, a research scientist at Google Brain. Nicholas works at the intersection of machine learning and computer security, and his recent paper “Extracting Training Data from LLMs” has generated quite a buzz within the ML community. In our conversation, we discuss the current state of adversarial machine learning research, the dynamic of dealing with privacy issues in black box vs accessible models, what privacy attacks in vision models like diffusion models look like, and the scale of “memorization” within these models. We also explore Nicholas’ work on data poisoning, which looks to understand what happens if a bad actor can take control of a small fraction of the data that an ML model is trained on. The complete show notes for this episode can be found at twimlai.com/go/618.

27 Helmi 202343min

Understanding AI’s Impact on Social Disparities with Vinodkumar Prabhakaran - #617

Understanding AI’s Impact on Social Disparities with Vinodkumar Prabhakaran - #617

Today we’re joined by Vinodkumar Prabhakaran, a Senior Research Scientist at Google Research. In our conversation with Vinod, we discuss his two main areas of research, using ML, specifically NLP, to explore these social disparities, and how these same social disparities are captured and propagated within machine learning tools. We explore a few specific projects, the first using NLP to analyze interactions between police officers and community members, determining factors like level of respect or politeness and how they play out across a spectrum of community members. We also discuss his work on understanding how bias creeps into the pipeline of building ML models, whether it be from the data or the person building the model. Finally, for those working with human annotators, Vinod shares his thoughts on how to incorporate principles of fairness to help build more robust models.  The complete show notes for this episode can be found at https://twimlai.com/go/617.

20 Helmi 202331min

AI Trends 2023: Causality and the Impact on Large Language Models with Robert Osazuwa Ness - #616

AI Trends 2023: Causality and the Impact on Large Language Models with Robert Osazuwa Ness - #616

Today we’re joined by Robert Osazuwa Ness, a senior researcher at Microsoft Research, to break down the latest trends in the world of causal modeling. In our conversation with Robert, we explore advances in areas like causal discovery, causal representation learning, and causal judgements. We also discuss the impact causality could have on large language models, especially in some of the recent use cases we’ve seen like Bing Search and ChatGPT. Finally, we discuss the benchmarks for causal modeling, the top causality use cases, and the most exciting opportunities in the field.   The complete show notes for this episode can be found at twimlai.com/go/616.

14 Helmi 20231h 22min

Data-Centric Zero-Shot Learning for Precision Agriculture with Dimitris Zermas - #615

Data-Centric Zero-Shot Learning for Precision Agriculture with Dimitris Zermas - #615

Today we’re joined by Dimitris Zermas, a principal scientist at agriscience company Sentera. Dimitris’ work at Sentera is focused on developing tools for precision agriculture using machine learning, including hardware like cameras and sensors, as well as ML models for analyzing the vast amount of data they acquire. We explore some specific use cases for machine learning, including plant counting, the challenges of working with classical computer vision techniques, database management, and data annotation. We also discuss their use of approaches like zero-shot learning and how they’ve taken advantage of a data-centric mindset when building a better, more cost-efficient product.

6 Helmi 202332min

How LLMs and Generative AI are Revolutionizing AI for Science with Anima Anandkumar - #614

How LLMs and Generative AI are Revolutionizing AI for Science with Anima Anandkumar - #614

Today we’re joined by Anima Anandkumar, Bren Professor of Computing And Mathematical Sciences at Caltech and Sr Director of AI Research at NVIDIA. In our conversation, we take a broad look at the emerging field of AI for Science, focusing on both practical applications and longer-term research areas. We discuss the latest developments in the area of protein folding, and how much it has evolved since we first discussed it on the podcast in 2018, the impact of generative models and stable diffusion on the space, and the application of neural operators. We also explore the ways in which prediction models like weather models could be improved, how foundation models are helping to drive innovation, and finally, we dig into MineDojo, a new framework built on the popular Minecraft game for embodied agent research, which won a 2022 Outstanding Paper Award at NeurIPS.  The complete show notes for this episode can be found at twimlai.com/go/614

30 Tammi 20231h 1min

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
rss-podme-livebox
otetaan-yhdet
et-sa-noin-voi-sanoo-esittaa
rss-lets-talk-about-hair
aihe
linda-maria
radio-antro
rss-polikulaari-humanisti-vastaa-ja-muut-ts-podcastit
rss-kaikki-uusiksi
rss-hyvaa-huomenta-bryssel
rss-raha-talous-ja-politiikka
the-ulkopolitist
mtv-uutiset-polloraati
rss-merja-mahkan-rahat
rss-kuka-mina-olen