Epigenetic Regulation of Stem Cell Self-Renewal and Differentiation (Margaret “Peggy” Goodell)
Epigenetics Podcast18 Helmi 2021

Epigenetic Regulation of Stem Cell Self-Renewal and Differentiation (Margaret “Peggy” Goodell)

In this episode of the Epigenetics Podcast, we caught up with Margaret (“Peggy”) Goodell from Baylor College of Medicine in Houston, Texas to talk about her work on the epigenetic regulation of stem cell self-renewal and differentiation.

Dr. Margret Goodell's laboratory focuses on how differentiation and self-renewal is regulated in hematopoietic stem cells (HSC). In the early stages of her research career, however, Dr. Goodell was able to develop a new method to purify stem cells. This method was based on the characteristic of stem cells to pump out the Hoechst dye that was used for the purification.

In recent years, the focus of the lab has been to identify how HSCs decide whether to self-renew or differentiate. To get an answer to this question, the lab has performed genome-wide screens to find differentially expressed genes during the decision process. By doing that, they recently found that the DNA methyltransferase 3A (DNMT3A) was highly and specifically expressed in HSCs and that it is required for differentiation. When DNMT3A was knocked out in HSCs, the cell population expanded dramatically and the ability to differentiate was impaired. This finding led to further experiments in this area and to the discovery of so-called DNA methylation canyons in the genome, which are large regions of very low DNA methylation that harbor highly conserved regulator genes.

In this episode we discuss how Dr. Peggy Goodell described a new approach to isolate hematopoietic stem cells even though she was not looking for that, how she discovered DNMT3A as an important factor in stem cell decision making, and how she entered and approached new fields of research along the path of her research career.

References

  • M. A. Goodell, K. Brose, … R. C. Mulligan (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo (The Journal of Experimental Medicine) DOI: 10.1084/jem.183.4.1797
  • Shannon McKinney-Freeman, Margaret A. Goodell (2004) Circulating hematopoietic stem cells do not efficiently home to bone marrow during homeostasis (Experimental Hematology) DOI: 10.1016/j.exphem.2004.06.010
  • Stuart M. Chambers, Chad A. Shaw, … Margaret A. Goodell (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation (PLoS biology) DOI: 10.1371/journal.pbio.0050201
  • Grant A. Challen, Deqiang Sun, … Margaret A. Goodell (2011) Dnmt3a is essential for hematopoietic stem cell differentiation (Nature Genetics) DOI: 10.1038/ng.1009

Related Episodes

Contact

Jaksot(168)

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

RNA-Mediated Epigenetic Regulation (Mo Motamedi)

In this episode of the Epigenetics Podcast, we talked with Mo Motamedi from the Center for Cancer Research at Massachusetts General Hospital about his work on RNA-mediated epigenetic regulation. The I...

2 Loka 202545min

Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

In this episode of the Epigenetics Podcast, we talked with Emily Wong from the University of New South Wales in Sydney about her work on how evolution shapes mammalian genes. As the head of the Regula...

18 Syys 202542min

Chromatin Evolution (Arnau Sebé-Pedrós)

Chromatin Evolution (Arnau Sebé-Pedrós)

In this episode of the Epigenetics Podcast, we talked with Arnau Sebé-Pedrós from the Center for Genomic Regulation in Barcelona about his work on chromatin evolution. The Interview starts by examinin...

4 Syys 202546min

Epigenetic Mechanisms in Breast Cancer (Luca Magnani)

Epigenetic Mechanisms in Breast Cancer (Luca Magnani)

In this episode of the Epigenetics Podcast, we talked with Luca Magnani from Institute of Cancer Research and UNIMI in Milan about his work on epigenetic mechanisms of drug resistance and cancer cell ...

21 Elo 202537min

How BRD4 and H2BE Influence Neuronal Activity (Erica Korb)

How BRD4 and H2BE Influence Neuronal Activity (Erica Korb)

In this episode of the Epigenetics Podcast, we talked with Erica Korb from the University of Pennsylvania about her work on BRD4 and the histone variant H2BE, which influences synaptic genes and neuro...

7 Elo 202537min

Mapping the Epigenome: From Arabidopsis to the Human Brain (Joseph Ecker)

Mapping the Epigenome: From Arabidopsis to the Human Brain (Joseph Ecker)

In this episode of the Epigenetics Podcast, we talked with Dr. Joseph Ecker from the Salk Institute about his work on high-resolution genome-wide mapping technologies, specifically how the regulation ...

24 Heinä 202544min

The Human Cell Atlas (Sarah Teichmann)

The Human Cell Atlas (Sarah Teichmann)

In this episode of the Epigenetics Podcast, we talked with Sarah Teichmann from the University of Cambridge about the Human Cell Atlas. In the Interview we explore Sarah Teichmann's impressive career ...

10 Heinä 202546min

The Discovery of Genomic Imprinting (Azim Surani)

The Discovery of Genomic Imprinting (Azim Surani)

In this episode, Professor Asim Surani, shares how his extensive research has significantly advanced the understanding of how the mammalian germline is specified, the mechanisms governing epigenetic r...

19 Kesä 202556min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
tiedekulma-podcast
rss-poliisin-mieli
docemilia
rss-duodecim-lehti
utelias-mieli
filocast-filosofian-perusteet
rss-laakaripodi
rss-opeklubi
rss-lihavuudesta-podcast
rss-sosiopodi
sotataidon-ytimessa
mielipaivakirja
radio-antro
rss-radplus
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita