Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti)

Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti)

In this episode of the Epigenetics Podcast, we caught up with Luca Giorgetti from the Friedrich Miescher Institute to hear about his work on long-range transcriptional control by 3D chromosome structure.

Luca Giorgetti's research focuses on chromosomal interactions, transcriptional output, and the dynamics of enhancer-promoter relationships. His lab investigated the causal relationship between chromosome interactions and transcriptional events. They’ve found that by manipulating the contact probabilities between an enhancer and a promoter by changing their distance, these changes had a substantial effect on transcription levels. This project was an experiment that Luca Giorgetti was eager to do, and it allowed him to establish a smooth functional relationship between contact probabilities and changes in transcription levels.

References

  • Giorgetti, L., Galupa, R., Nora, E. P., Piolot, T., Lam, F., Dekker, J., Tiana, G., & Heard, E. (2014). Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell, 157(4), 950–963. https://doi.org/10.1016/j.cell.2014.03.025

  • Redolfi, J., Zhan, Y., Valdes-Quezada, C., Kryzhanovska, M., Guerreiro, I., Iesmantavicius, V., Pollex, T., Grand, R. S., Mulugeta, E., Kind, J., Tiana, G., Smallwood, S. A., de Laat, W., & Giorgetti, L. (2019). DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nature structural & molecular biology, 26(6), 471–480. https://doi.org/10.1038/s41594-019-0231-0

  • Zuin, J., Roth, G., Zhan, Y., Cramard, J., Redolfi, J., Piskadlo, E., Mach, P., Kryzhanovska, M., Tihanyi, G., Kohler, H., Eder, M., Leemans, C., van Steensel, B., Meister, P., Smallwood, S., & Giorgetti, L. (2022). Nonlinear control of transcription through enhancer-promoter interactions. Nature, 604(7906), 571–577. https://doi.org/10.1038/s41586-022-04570-y

  • Mach, P., Kos, P. I., Zhan, Y., Cramard, J., Gaudin, S., Tünnermann, J., Marchi, E., Eglinger, J., Zuin, J., Kryzhanovska, M., Smallwood, S., Gelman, L., Roth, G., Nora, E. P., Tiana, G., & Giorgetti, L. (2022). Cohesin and CTCF control the dynamics of chromosome folding. Nature genetics, 54(12), 1907–1918. https://doi.org/10.1038/s41588-022-01232-7

Related Episodes

Contact

Jaksot(167)

Epigenetics and X-inactivation (Edith Heard)

Epigenetics and X-inactivation (Edith Heard)

In the seventh Episode of Active Motif's Epigenetics Podcast our host Dr. Stefan Dillinger sat down with Prof. Edith Heard, designated Director General of the European Molecular Biology Laboratory (EM...

21 Marras 201835min

Chromatin Organization (Susan Gasser)

Chromatin Organization (Susan Gasser)

In the sixth Episode of Active Motif's Epigenetics Podcast our host Dr. Stefan Dillinger sits down with Prof. Susan Gasser, director of the Friedrich Miescher Institute in Basel, to talk about her res...

15 Loka 201833min

Epigenomics (Henk Stunnenberg)

Epigenomics (Henk Stunnenberg)

In the fifth Episode of the Epigenetics Podcast of Active Motif our host Dr. Stefan Dillinger sits down with Prof. Henk Stunnenberg, full professor and head of the Department of Molecular Biology at t...

12 Syys 201833min

Aging and Epigenetics (Peter Tessarz)

Aging and Epigenetics (Peter Tessarz)

The aging population and challenges that arise from aging are one of the great scientific challenges of this time. In the fourth episode of the Epigenetics Podcast from Active Motif, our host Dr. Stef...

3 Tammi 201830min

Cancer and Epigenetics (David Jones)

Cancer and Epigenetics (David Jones)

Cancer has become one of the most dangerous diseases of the aging population of industrialized countries. Finding tools to fight cancer is hard, because Cancer presents itself as highly heterogeneous,...

31 Loka 201732min

The Nucleosome (Ada and Don Olins)

The Nucleosome (Ada and Don Olins)

The Nucleosome is the basic building unit of chromatin. It consists out of 147 base pairs of double stranded DNA wrapped around the Histone core octamer that consists out of 2 copies of each dimer of ...

11 Syys 201734min

Multiple Challenges in ChIP (Adam Blattler)

Multiple Challenges in ChIP (Adam Blattler)

Chromatin Immunoprecipitation (ChIP) was first developed in Drosophila, where interactions of RNA Pol II with genes were investigated (Mol. Cell. Biol. August 1985 vol. 5 no. 8 2009-2018). Then, in a ...

9 Kesä 201735min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
rss-lihavuudesta-podcast
utelias-mieli
tiedekulma-podcast
rss-duodecim-lehti
rss-opeklubi
docemilia
hippokrateen-vastaanotolla
mielipaivakirja
radio-antro
rss-laakaripodi
rss-mental-race
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita