H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)
Epigenetics Podcast7 Maalis 2024

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

In this episode of the Epigenetics Podcast, we talked with Weiwei Dang from Baylor College of Medicine about his work on molecular mechanisms of aging and the role of H3K36me3 and cryptic transcription in cellular aging.

The team in the Weiwei Dang lab explored the connection between histone marks, specifically H4K16 acetylation and H3K36 methylation, and aging. Dr. Dang describes how the lab conducted experiments by mutating H4K16 to determine its effect on lifespan. They observed that the mutation to glutamine accelerated the aging process and shortened lifespan, providing causal evidence for the relationship between H4K16 and lifespan. They also discovered that mutations in acetyltransferase and demethylase enzymes had opposite effects on lifespan, further supporting a causal relationship.

Weiwei Dang then discusses their expanded research on aging, conducting high-throughput screens to identify other histone residues and mutants in yeast that regulate aging. They found that most mutations at K36 shortened lifespan, and so they decided to follow up on a site that is known to be methylated and play a role in gene function. They discovered that H3K36 methylation helps suppress cryptic transcription, which is transcription that initiates from within the gene rather than at the promoter. Mutants lacking K36 methylation showed an aging phenotype. They also found evidence of cryptic transcription in various datasets related to aging and senescence, including C. elegans and mammalian cells.

References

  • Dang, W., Steffen, K., Perry, R. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009). https://doi.org/10.1038/nature08085

  • Sen, P., Dang, W., Donahue, G., Dai, J., Dorsey, J., Cao, X., Liu, W., Cao, K., Perry, R., Lee, J. Y., Wasko, B. M., Carr, D. T., He, C., Robison, B., Wagner, J., Gregory, B. D., Kaeberlein, M., Kennedy, B. K., Boeke, J. D., & Berger, S. L. (2015). H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes & development, 29(13), 1362–1376. https://doi.org/10.1101/gad.263707.115

  • Yu, R., Cao, X., Sun, L. et al. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12, 1981 (2021). https://doi.org/10.1038/s41467-021-22257-2

  • McCauley, B.S., Sun, L., Yu, R. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat Aging 1, 684–697 (2021). https://doi.org/10.1038/s43587-021-00091-x

Related Episodes

Contact

Jaksot(167)

DNA Replication, Transcription and R-loops (Stephan Hamperl)

DNA Replication, Transcription and R-loops (Stephan Hamperl)

In this episode of the Epigenetics Podcast, we talked with Dr. Stephan Hamperl from the Helmholtz Zentrum Munich about his work on how conflicts between transcription, replication, and R-loop formatio...

13 Kesä 202434min

Mutations of Gene Regulatory Elements in Human Disease (Nadav Ahituv)

Mutations of Gene Regulatory Elements in Human Disease (Nadav Ahituv)

In this episode of the Epigenetics Podcast, we talked with Nadav Ahituv from University of California, San Francisco about his work on mutations of gene regulatory elements in human disease. Using mas...

30 Touko 202449min

Using Single-Cell Multiomics to Characterize Human Developmental Hematopoiesis (Ana Cvejic)

Using Single-Cell Multiomics to Characterize Human Developmental Hematopoiesis (Ana Cvejic)

In this episode of the Epigenetics Podcast, we talked with Ana Cvejic from the Biotech Research & Innovation Centre at the University of Copenhagen about her work on using sc-multiomics to characteris...

16 Touko 202437min

The Impact of Sequence Variation on Transcription Factor Binding (Sven Heinz)

The Impact of Sequence Variation on Transcription Factor Binding (Sven Heinz)

In this episode of the Epigenetics Podcast, we talked with Sven Heinz from the University of California in San Diego about his work on the impact of sequence variation on transcription factor binding ...

2 Touko 202440min

Comparing CUT&Tag to ENCODE ChIP-Seq in Alzheimer's Disease Samples (Sarah Marzi)

Comparing CUT&Tag to ENCODE ChIP-Seq in Alzheimer's Disease Samples (Sarah Marzi)

In this episode of the Epigenetics Podcast, we talked with Sarah Marzi from the UK Dementia Research Institute at Imperial College London about her work on epigenetic changes in Alzheimer's Disease, a...

18 Huhti 202446min

The Role of Hat1p in Chromatin Assembly (Mark Parthun)

The Role of Hat1p in Chromatin Assembly (Mark Parthun)

In this episode of the Epigenetics Podcast, we talked with Mark Parthun from Ohio State University about his work on the role of Hat1p in chromatin assembly. Mark Parthun shares insights into his pivo...

4 Huhti 202447min

The Impact of Paternal Diet on Offspring Metabolism (Upasna Sharma)

The Impact of Paternal Diet on Offspring Metabolism (Upasna Sharma)

In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work on a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on of...

21 Maalis 202436min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
rss-lihavuudesta-podcast
utelias-mieli
rss-duodecim-lehti
tiedekulma-podcast
rss-opeklubi
docemilia
mielipaivakirja
hippokrateen-vastaanotolla
radio-antro
rss-mental-race
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita
rss-sosiopodi