H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)
Epigenetics Podcast7 Maalis 2024

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

In this episode of the Epigenetics Podcast, we talked with Weiwei Dang from Baylor College of Medicine about his work on molecular mechanisms of aging and the role of H3K36me3 and cryptic transcription in cellular aging.

The team in the Weiwei Dang lab explored the connection between histone marks, specifically H4K16 acetylation and H3K36 methylation, and aging. Dr. Dang describes how the lab conducted experiments by mutating H4K16 to determine its effect on lifespan. They observed that the mutation to glutamine accelerated the aging process and shortened lifespan, providing causal evidence for the relationship between H4K16 and lifespan. They also discovered that mutations in acetyltransferase and demethylase enzymes had opposite effects on lifespan, further supporting a causal relationship.

Weiwei Dang then discusses their expanded research on aging, conducting high-throughput screens to identify other histone residues and mutants in yeast that regulate aging. They found that most mutations at K36 shortened lifespan, and so they decided to follow up on a site that is known to be methylated and play a role in gene function. They discovered that H3K36 methylation helps suppress cryptic transcription, which is transcription that initiates from within the gene rather than at the promoter. Mutants lacking K36 methylation showed an aging phenotype. They also found evidence of cryptic transcription in various datasets related to aging and senescence, including C. elegans and mammalian cells.

References

  • Dang, W., Steffen, K., Perry, R. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009). https://doi.org/10.1038/nature08085

  • Sen, P., Dang, W., Donahue, G., Dai, J., Dorsey, J., Cao, X., Liu, W., Cao, K., Perry, R., Lee, J. Y., Wasko, B. M., Carr, D. T., He, C., Robison, B., Wagner, J., Gregory, B. D., Kaeberlein, M., Kennedy, B. K., Boeke, J. D., & Berger, S. L. (2015). H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes & development, 29(13), 1362–1376. https://doi.org/10.1101/gad.263707.115

  • Yu, R., Cao, X., Sun, L. et al. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12, 1981 (2021). https://doi.org/10.1038/s41467-021-22257-2

  • McCauley, B.S., Sun, L., Yu, R. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat Aging 1, 684–697 (2021). https://doi.org/10.1038/s43587-021-00091-x

Related Episodes

Contact

Jaksot(167)

Inheritance of Transcriptional Memory by Mitotic Bookmarking (Sheila Teves)

Inheritance of Transcriptional Memory by Mitotic Bookmarking (Sheila Teves)

In this episode of the Epigenetics Podcast, we caught up with Sheila Teves from the University of British Columbia to talk about her work on the inheritance of transcriptional memory by mitotic bookma...

19 Loka 202345min

Differential Methylated Regions in Autism Spectrum Disorders (Janine La Salle)

Differential Methylated Regions in Autism Spectrum Disorders (Janine La Salle)

In this episode of the Epigenetics Podcast, we talked with Janine La Salle from UC Davis about her work on differential methylated regions in autism spectrum disorders. In our discussion, Janine LaSal...

5 Loka 202340min

DNA Damage in Longevity and Ageing (Björn Schumacher)

DNA Damage in Longevity and Ageing (Björn Schumacher)

In this episode of the Epigenetics Podcast, we caught up with Björn Schumacher from the Institute for Genome Stability in Ageing and Disease at the University of Cologne to talk about his work on DNA ...

21 Syys 202349min

The Impact of Chromatin Modifiers on Disease Development and Progression (Capucine van Rechem)

The Impact of Chromatin Modifiers on Disease Development and Progression (Capucine van Rechem)

In this episode of the Epigenetics Podcast, we talked with Capucine van Rechem from Stanford University about her work on the impact of chromatin modifiers on disease development and progression. Dur...

7 Syys 202340min

Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti)

Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti)

In this episode of the Epigenetics Podcast, we caught up with Luca Giorgetti from the Friedrich Miescher Institute to hear about his work on long-range transcriptional control by 3D chromosome structu...

24 Elo 202340min

Transgenerational Inheritance and Epigenetic Imprinting in Plants (Mary Gehring)

Transgenerational Inheritance and Epigenetic Imprinting in Plants (Mary Gehring)

In this episode of the Epigenetics Podcast, we talked with Mary Gehring from MIT about her work on transgenerational inheritance and epigenetic imprinting in plants. Mary Gehring and her team are focu...

10 Elo 202328min

When is a Peak a Peak? (Claudio Cantù)

When is a Peak a Peak? (Claudio Cantù)

In this episode of the Epigenetics Podcast, we talked to Claudio Cantù from Linköping University about his work on peak blacklists, peak concordance and what is a peak in CUT&RUN. Our host Stefan Dill...

27 Heinä 20231h 8min

Analysis of 3D Chromatin Structure Using Super-Resolution Imaging (Alistair Boettiger)

Analysis of 3D Chromatin Structure Using Super-Resolution Imaging (Alistair Boettiger)

In this episode of the Epigenetics Podcast, we talked with Alistair Boettiger from Stanford University about his work on the analysis of 3D chromatin structure of single cells using super-resolution i...

13 Heinä 202340min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
rss-duodecim-lehti
tiedekulma-podcast
rss-lihavuudesta-podcast
utelias-mieli
docemilia
mielipaivakirja
radio-antro
rss-opeklubi
sotataidon-ytimessa
hippokrateen-vastaanotolla
rss-laakaripodi
rss-mental-race
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita
rss-sosiopodi