Mutations of Gene Regulatory Elements in Human Disease (Nadav Ahituv)
Epigenetics Podcast30 Touko 2024

Mutations of Gene Regulatory Elements in Human Disease (Nadav Ahituv)

In this episode of the Epigenetics Podcast, we talked with Nadav Ahituv from University of California, San Francisco about his work on mutations of gene regulatory elements in human disease.

Using massively parallel experiments, his lab revolutionized functional genomics by studying the impact of transcription factor binding sites on gene expression. His groundbreaking technology deciphered the regulatory language of gene expression by exploring transcription factor combinations, spacing, and orientation. By delving into the influence of DNA shape and gene topology, Nadav Ahituv's research provides a comprehensive understanding of gene regulation at the molecular level, shedding light on the complexity of genetic interactions.

The conversation delves into specific cases involving enhancers, gene sequencing, and 3D genomic structure, highlighting the impact of critical elements such as CTCF sites on gene expression. Discussions of haploid insufficiency and its implications for human health, using CRISPR technology to enhance gene expression, offer new possibilities for treating genetic diseases. Explorations of leptin-responsive regulatory elements in the hypothalamus and liver-associated transcription factors provide insights into metabolic regulation and gene expression networks in different tissues.

The episode also explores the epigenomic landscape, the evolution of methods from bulk approaches to single-cell analyses, and the role of AI and machine learning in deciphering complex genetic patterns. The conversation transitions to a unique study of bat embryonic development, dietary differences, and their implications for understanding wing development and metabolism in different bat species.

References
  • Ahituv, N., Zhu, Y., Visel, A., Holt, A., Afzal, V., Pennacchio, L. A., & Rubin, E. M. (2007). Deletion of ultraconserved elements yields viable mice. PLoS biology, 5(9), e234. https://doi.org/10.1371/journal.pbio.0050234

  • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., Hardin, A., Eckalbar, W. L., Vaisse, C., & Ahituv, N. (2019). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science (New York, N.Y.), 363(6424), eaau0629. https://doi.org/10.1126/science.aau0629

  • Ushiki, A., Zhang, Y., Xiong, C., Zhao, J., Georgakopoulos-Soares, I., Kane, L., Jamieson, K., Bamshad, M. J., Nickerson, D. A., University of Washington Center for Mendelian Genomics, Shen, Y., Lettice, L. A., Silveira-Lucas, E. L., Petit, F., & Ahituv, N. (2021). Deletion of CTCF sites in the SHH locus alters enhancer-promoter interactions and leads to acheiropodia. Nature communications, 12(1), 2282. https://doi.org/10.1038/s41467-021-22470-z

  • Georgakopoulos-Soares, I., Deng, C., Agarwal, V., Chan, C. S. Y., Zhao, J., Inoue, F., & Ahituv, N. (2023). Transcription factor binding site orientation and order are major drivers of gene regulatory activity. Nature communications, 14(1), 2333. https://doi.org/10.1038/s41467-023-37960-5

  • Gordon, W. E., Baek, S., Nguyen, H. P., Kuo, Y. M., Bradley, R., Fong, S. L., Kim, N., Galazyuk, A., Lee, I., Ingala, M. R., Simmons, N. B., Schountz, T., Cooper, L. N., Georgakopoulos-Soares, I., Hemberg, M., & Ahituv, N. (2024). Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nature communications, 15(1), 12. https://doi.org/10.1038/s41467-023-44186-y

Related Episodes

Contact

Jaksot(167)

DNA Replication, Transcription and R-loops (Stephan Hamperl)

DNA Replication, Transcription and R-loops (Stephan Hamperl)

In this episode of the Epigenetics Podcast, we talked with Dr. Stephan Hamperl from the Helmholtz Zentrum Munich about his work on how conflicts between transcription, replication, and R-loop formatio...

13 Kesä 202434min

Using Single-Cell Multiomics to Characterize Human Developmental Hematopoiesis (Ana Cvejic)

Using Single-Cell Multiomics to Characterize Human Developmental Hematopoiesis (Ana Cvejic)

In this episode of the Epigenetics Podcast, we talked with Ana Cvejic from the Biotech Research & Innovation Centre at the University of Copenhagen about her work on using sc-multiomics to characteris...

16 Touko 202437min

The Impact of Sequence Variation on Transcription Factor Binding (Sven Heinz)

The Impact of Sequence Variation on Transcription Factor Binding (Sven Heinz)

In this episode of the Epigenetics Podcast, we talked with Sven Heinz from the University of California in San Diego about his work on the impact of sequence variation on transcription factor binding ...

2 Touko 202440min

Comparing CUT&Tag to ENCODE ChIP-Seq in Alzheimer's Disease Samples (Sarah Marzi)

Comparing CUT&Tag to ENCODE ChIP-Seq in Alzheimer's Disease Samples (Sarah Marzi)

In this episode of the Epigenetics Podcast, we talked with Sarah Marzi from the UK Dementia Research Institute at Imperial College London about her work on epigenetic changes in Alzheimer's Disease, a...

18 Huhti 202446min

The Role of Hat1p in Chromatin Assembly (Mark Parthun)

The Role of Hat1p in Chromatin Assembly (Mark Parthun)

In this episode of the Epigenetics Podcast, we talked with Mark Parthun from Ohio State University about his work on the role of Hat1p in chromatin assembly. Mark Parthun shares insights into his pivo...

4 Huhti 202447min

The Impact of Paternal Diet on Offspring Metabolism (Upasna Sharma)

The Impact of Paternal Diet on Offspring Metabolism (Upasna Sharma)

In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work on a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on of...

21 Maalis 202436min

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

In this episode of the Epigenetics Podcast, we talked with Weiwei Dang from Baylor College of Medicine about his work on molecular mechanisms of aging and the role of H3K36me3 and cryptic transcriptio...

7 Maalis 202456min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
tiedekulma-podcast
rss-lihavuudesta-podcast
utelias-mieli
rss-duodecim-lehti
rss-laakaripodi
rss-opeklubi
docemilia
hippokrateen-vastaanotolla
mielipaivakirja
radio-antro
rss-mental-race
rss-ylistys-elaimille