Blind Spots in Reinforcement Learning
Data Skeptic29 Kesä 2018

Blind Spots in Reinforcement Learning

An intelligent agent trained in a simulated environment may be prone to making mistakes in the real world due to discrepancies between the training and real-world conditions. The areas where an agent makes mistakes are hard to find, known as "blind spots," and can stem from various reasons. In this week's episode, Kyle is joined by Ramya Ramakrishnan, a PhD candidate at MIT, to discuss the idea "blind spots" in reinforcement learning and approaches to discover them.

Jaksot(588)

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
tiedekulma-podcast
utelias-mieli
hippokrateen-vastaanotolla
docemilia
rss-poliisin-mieli
rss-lihavuudesta-podcast
sotataidon-ytimessa
filocast-filosofian-perusteet
rss-duodecim-lehti
radio-antro
menologeja-tutkimusmatka-vaihdevuosiin
rss-ammamafia
rss-ilmasto-kriisissa
vinkista-vihia
rss-ranskaa-raakana
rss-laakaripodi
rss-tiedetta-vai-tarinaa
rss-jyvaskylan-yliopisto
rss-pandapodi