[MINI] Sudoku \in NP
Data Skeptic10 Marras 2017

[MINI] Sudoku \in NP

Algorithms with similar runtimes are said to be in the same complexity class. That runtime is measured in the how many steps an algorithm takes relative to the input size.

The class P contains all algorithms which run in polynomial time (basically, a nested for loop iterating over the input). NP are algorithms which seem to require brute force. Brute force search cannot be done in polynomial time, so it seems that problems in NP are more difficult than problems in P. I say it "seems" this way because, while most people believe it to be true, it has not been proven. This is the famous P vs. NP conjecture. It will be discussed in more detail in a future episode.

Given a solution to a particular problem, if it can be verified/checked in polynomial time, that problem might be in NP. If someone hands you a completed Sudoku puzzle, it's not difficult to see if they made any mistakes. The effort of developing the solution to the Sudoku game seems to be intrinsically more difficult. In fact, as far as anyone knows, in the general case of all possible examples of the game, it seems no strategy can do better on average than just random guessing.

This notion of random guessing the solution is where the N in NP comes from: Non-deterministic. Imagine a machine with a random input already written in its memory. Given enough such machines, one of them will have the right answer. If they all ran in parallel, one of them could verify it's input in polynomial time. This guess / provided input is often called a witness string.

NP is an important concept for many reasons. To me, the most reason to know about NP is a practical one. Depending on your goals or the goals of your employer, there are many challenging problems you may attempt to solve. If a problem you are trying to solve happens to be in NP, then you should consider the implications very carefully. Perhaps you'll be lucky and discover that your particular instance of the problem is easy. Sudoku is pretty easy if only 2 remaining squares need to be filled in. The traveling salesman problem is easy to solve if you live in a country where all roads for a ring with exactly one road in and out.

If the problem you wish to solve is not trivial, or if you will face many instances of the problem and expect some will not be trivial, then it's unlikely you'll be able to find the exact solution. Sure, maybe you can grab a bunch of commodity servers and try to scale the heck out of your attempt. Depending on the problem you're solving, that might just work. If you can out-purchase your problem in computing power, then problems in NP will surrender to you. But if your input size ever grows, it's unlikely you'll be able to keep up.

If your problem is intractable in this way, all is not lost. You might be able to find an approximate solution to your problem. Good enough is better than no solution at all, right? Most of the time, probably. However, some tremendous work has also been done studying topics like this. Are there problems which are not even approximable in polynomial time? What approximation techniques work best? Alas, those answers lie elsewhere.

This episode avoids a discussion of a few key points in order to keep the material accessible. If you find this interesting, you should next familiarize yourself with the notions of NP-Complete, NP-Hard, and co-NP. These are topics we won't necessarily get to in future episodes. Michael Sipser's Introduction to the Theory of Computation is a good resource.

Jaksot(588)

Network Manipulation

Network Manipulation

In this episode we talk with Manita Pote, a PhD student at Indiana University Bloomington, specializing in online trust and safety, with a focus on detecting coordinated manipulation campaigns on social media.  Key insights include how coordinated reply attacks target influential figures like journalists and politicians, how machine learning models can detect these inauthentic campaigns using structural and behavioral features, and how deletion patterns reveal efforts to evade moderation or manipulate engagement metrics. Follow our guest X/Twitter Google Scholar Papers in focus Coordinated Reply Attacks in Influence Operations: Characterization and Detection ,2025 Manipulating Twitter through Deletions,2022

30 Huhti 40min

The Small World Hypothesis

The Small World Hypothesis

Kyle discusses the history and proof for the small world hypothesis.

21 Huhti 17min

Thinking in Networks

Thinking in Networks

Kyle asks Asaf questions about the new network science course he is now teaching.  The conversation delves into topics such as contact tracing, tools for analyzing networks, example use cases, and the importance of thinking in networks.

12 Huhti 33min

Fraud Networks

Fraud Networks

In this episode we talk with Bavo DC Campo, a data scientist and statistician, who shares his expertise on the intersection of actuarial science, fraud detection, and social network analytics. Together we will learn how to use graphs to fight against insurance fraud by uncovering hidden connections between fraudulent claims and bad actors. Key insights include how social network analytics can detect fraud rings by mapping relationships between policyholders, claims, and service providers, and how the BiRank algorithm, inspired by Google's PageRank, helps rank suspicious claims based on network structure. Bavo will also present his iFraud simulator that can be used to model fraudulent networks for detection training purposes. Do you have a question about fraud detection? Bavo says he will gladly help. Feel free to contact him. ------------------------------- Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year https://plus.dataskeptic.com

1 Huhti 42min

Criminal Networks

Criminal Networks

In this episode we talk with Justin Wang Ngai Yeung, a PhD candidate at the Network Science Institute at Northeastern University in London, who explores how network science helps uncover criminal networks. Justin is also a member of the organizing committee of the satellite conference dealing with criminal networks at the network science conference in The Netherlands in June 2025. Listeners will learn how graph-based models assist law enforcement in analyzing missing data, identifying key figures in criminal organizations, and improving intervention strategies. Key insights include the challenges of incomplete and inaccurate data in criminal network analysis, how law enforcement agencies use network dismantling techniques to disrupt organized crime, and the role of machine learning in predicting hidden connections within illicit networks. ------------------------------- Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year https://plus.dataskeptic.com

17 Maalis 43min

Graph Bugs

Graph Bugs

In this episode today's guest is Celine Wüst, a master's student at ETH Zurich specializing in secure and reliable systems, shares her work on automated software testing for graph databases. Celine shows how fuzzing—the process of automatically generating complex queries—helps uncover hidden bugs in graph database management systems like Neo4j, FalconDB, and Apache AGE. Key insights include how state-aware query generation can detect critical issues like buffer overflows and crashes, the challenges of debugging complex database behaviors, and the importance of security-focused software testing. We'll also find out which Graph DB company offers swag for finding bugs in its software and get Celine's advice about which graph DB to use. ------------------------------- Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year https://plus.dataskeptic.com

10 Maalis 29min

Organizational Network Analysis

Organizational Network Analysis

In this episode, Gabriel Petrescu, an organizational network analyst, discusses how network science can provide deep insights into organizational structures using OrgXO, a tool that maps companies as networks rather than rigid hierarchies. Listeners will learn how analyzing workplace collaboration networks can reveal hidden influencers, organizational bottlenecks, and engagement levels, offering a data-driven approach to improving effectiveness and resilience. Key insights include how companies can identify overburdened employees, address silos between departments, and detect vulnerabilities where too few individuals hold critical knowledge. Real-life applications range from mergers and acquisitions, where network analysis helps assess company dynamics before an acquisition, to restructuring efforts that improve workflow and team collaboration. Gabriel's work highlights how organizations can shift from traditional hierarchical thinking to a network-based perspective, leading to smarter decision-making and more adaptable companies.

3 Maalis 44min

Organizational Networks

Organizational Networks

Is it better to have your work team fully connected or sparsely connected? In this episode we'll try to answer this question and more with our guest Hiroki Sayama, a SUNY Distinguished Professor and director of the Center for Complex Systems at Binghamton University. Hiroki delves into the applications of network science in organizational structures and innovation dynamics by showing his recent work of extracting network structures from organizational charts to enable insights into decision-making and performance, He'll also cover how network connectivity impacts team creativity and innovation. Key insights include how the structure of organizational networks—such as the depth of hierarchy or proximity to leadership—can influence corporate performance and how sparse network connectivity fosters more diverse and innovative ideas than fully connected networks.

25 Helmi 27min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
utelias-mieli
tiedekulma-podcast
hippokrateen-vastaanotolla
rss-poliisin-mieli
docemilia
sotataidon-ytimessa
filocast-filosofian-perusteet
rss-lihavuudesta-podcast
rss-duodecim-lehti
menologeja-tutkimusmatka-vaihdevuosiin
rss-ammamafia
rss-tiedetta-vai-tarinaa
rss-ilmasto-kriisissa
vinkista-vihia
radio-antro
rss-ranskaa-raakana
rss-jyvaskylan-yliopisto
rss-pandapodi