The Complexity of Learning Neural Networks
Data Skeptic20 Loka 2017

The Complexity of Learning Neural Networks

Over the past several years, we have seen many success stories in machine learning brought about by deep learning techniques. While the practical success of deep learning has been phenomenal, the formal guarantees have been lacking. Our current theoretical understanding of the many techniques that are central to the current ongoing big-data revolution is far from being sufficient for rigorous analysis, at best. In this episode of Data Skeptic, our host Kyle Polich welcomes guest John Wilmes, a mathematics post-doctoral researcher at Georgia Tech, to discuss the efficiency of neural network learning through complexity theory.

Jaksot(588)

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
tiedekulma-podcast
utelias-mieli
hippokrateen-vastaanotolla
docemilia
rss-poliisin-mieli
rss-lihavuudesta-podcast
sotataidon-ytimessa
filocast-filosofian-perusteet
rss-duodecim-lehti
radio-antro
menologeja-tutkimusmatka-vaihdevuosiin
rss-ammamafia
rss-ilmasto-kriisissa
vinkista-vihia
rss-ranskaa-raakana
rss-laakaripodi
rss-tiedetta-vai-tarinaa
rss-jyvaskylan-yliopisto
rss-pandapodi