SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model | #ai #2025 #genai #google
AI Today7 Helmi 2025

SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model | #ai #2025 #genai #google

Paper: https://arxiv.org/pdf/2501.17161 This research paper compares supervised fine-tuning (SFT) and reinforcement learning (RL) for post-training foundation models. Using novel and existing tasks involving arithmetic and spatial reasoning, the study finds that RL promotes better generalization to unseen data, unlike SFT which tends to memorize training data. Further analysis reveals RL enhances visual recognition capabilities in multimodal models, while SFT aids in stabilizing RL training by improving output formatting. The paper also explores the impact of increased inference-time computation on generalization. #ai, #artificialintelligence, #arxiv, #research, #paper, #publication, #llm, #genai, #generativeai, #largevisualmodels, #largelanguagemodels, #largemultimodalmodels, #nlp, #text, #machinelearning, #ml, #nvidia, #openai, #anthropic, #microsoft, #google, #technology, #cuttingedge, #meta, #llama, #chatgpt, #gpt, #elonmusk, #samaltman, #deployment, #engineering, #scholar, #science, #apple, #samsung, #turing, #aiethics, #innovation, #futuretech, #deeplearning, #datascience, #computervision, #autonomoussystems, #robotics, #dataprivacy, #cybersecurity, #digitaltransformation, #quantumcomputing, #aiapplications, #aiethics, #techleadership, #technews, #aiinsights, #aiindustry, #aiadvancements, #futureai, #airesearchers

Jaksot(30)

SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024

SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024

Paper: https://arxiv.org/pdf/2411.11922 Github: https://github.com/yangchris11/samurai Blog: https://yangchris11.github.io/samurai/ The paper introduces SAMURAI, a novel visual object tracking method...

27 Marras 202414min

Adding Error Bars to Evals: A Statistical Approach to LM Evaluations | #llm #genai #anthropic #2024

Adding Error Bars to Evals: A Statistical Approach to LM Evaluations | #llm #genai #anthropic #2024

Github: https://arxiv.org/pdf/2411.00640 This research paper advocates for incorporating rigorous statistical methods into the evaluation of large language models (LLMs). It introduces formulas for c...

27 Marras 202414min

Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions | #ai #llm #alibaba #genai #2024

Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions | #ai #llm #alibaba #genai #2024

Paper: https://arxiv.org/pdf/2411.14405 Github: https://github.com/AIDC-AI/Marco-o1 The Alibaba MarcoPolo team introduces Marco-o1, a large reasoning model designed to excel in open-ended problem-sol...

27 Marras 202414min

FLUX.I TOOLS | #ai #computervision #cv #BlackForestLabs #2024

FLUX.I TOOLS | #ai #computervision #cv #BlackForestLabs #2024

Github: https://github.com/black-forest-labs/... Black Forest Labs announced FLUX.1 Tools, a suite of four open-access and API-based models enhancing their FLUX.1 text-to-image model. FLUX.1 Fill exc...

27 Marras 202414min

Tülu 3 opens language model post-training up to more tasks and more people | #ai #llm #allenai #2024

Tülu 3 opens language model post-training up to more tasks and more people | #ai #llm #allenai #2024

Blog: https://allenai.org/blog/tulu-3 Summary The Allen Institute for Artificial Intelligence (Ai2) has released Tülu 3, an open-source family of post-trained language models. Unlike closed models fr...

27 Marras 202414min

Multimodal Autoregressive Pre-training of Large Vision Encoders | #ai #computervision #apple #2024

Multimodal Autoregressive Pre-training of Large Vision Encoders | #ai #computervision #apple #2024

Paper: https://arxiv.org/pdf/2411.14402 Github Link: https://github.com/apple/ml-aim This research introduces AIMV2, a family of large-scale vision encoders pre-trained using a novel multimodal auto...

27 Marras 202414min