#499: BeeWare and the State of Python on Mobile

#499: BeeWare and the State of Python on Mobile

This episode is all about Beeware, the project that working towards true native apps built on Python, especially for iOS and Android. Russell's been at this for more than a decade, and the progress is now hitting critical mass. We'll talk about the Toga GUI toolkit, building and shipping your apps with Briefcase, the newly official support for iOS and Android in CPython, and so much more. I can't wait to explore how BeeWare opens up the entire mobile ecosystem for Python developers, let's jump right in.

Jaksot(524)

#365: Solving Negative Engineering Problems with Prefect

#365: Solving Negative Engineering Problems with Prefect

How much time do you spend solving negative engineering problems? And can a framework solve them for you? Think of negative engineering as things you do to avoid bad outcomes in software. At the lowest level, this can be writing good error handling with try / except. But it's broader than that: logging, observability (like Sentry tools), retries, failover (as in what you might get from Kubernetes), and so on. We have a great chat with Chris White about Prefect, a tool for data engineers and data scientists meaning to solve many of these problems automatically. But it's a conversation applicable to a broader software development community as well.

12 Touko 20221h 4min

#364: Symbolic Math with Python using SymPy

#364: Symbolic Math with Python using SymPy

We're all familiar with the data science tools like numpy, pandas, and others. These are numerical tools working with floating point numbers, often to represent real-world systems. But what if you exactly specify the equations, symbolically like many of us did back in Calculus and Differential Equations courses? With SymPy, you can do exactly that. Create equations, integrate, differentiate, and solve them. Then you can convert those solutions into Python (or even C++ and Fortran code). We're here with two of the core maintainer: Ondřej Čertík and Aaron Meurer to learn all about SymPy.

7 Touko 20221h 7min

#363: Python for .NET and C# developers

#363: Python for .NET and C# developers

Are you coming to Python from another language and ecosystem? It can seem a bit daunting at first. But Python is very welcoming and has a massive array of tools and libraries. In this episode, I speak to my friend Cecil Philip who does both Python and .NET development. We discuss what it's like coming to Python from .NET as well as a whole bunch of compare and contrasts across the two ecosystems.

28 Huhti 20221h 6min

#362: Hypermodern Python Projects

#362: Hypermodern Python Projects

What would a modern Python project look like? Maybe it would use Poetry rather than pip directly for its package management. Perhaps its test automation would be controlled with Nox. You might automate its release notes with Release Drafter. The list goes on and on. And that list is the topic of this episode. Join me and Claudio Jolowicz as we discuss his Hypermodern Python project and template.

20 Huhti 20221h 6min

#361: Pangeo Data Ecosystem

#361: Pangeo Data Ecosystem

Python's place in climate research is an important one. In this episode, you'll meet Joe Hamman and Ryan Abernathey, two researchers using powerful cloud computing systems and Python to understand how the world around us is changing. They are both involved in the Pangeo project which brings a great set of tools for scaling complex compute with Python.

16 Huhti 202254min

#360: Removing Python's Dead Batteries (in just 5 years)

#360: Removing Python's Dead Batteries (in just 5 years)

Python has come a long way since it was released in 1991. It originally released when the Standard Library was primary the totality of functionality you could leverage when building your applications. With the addition of pip and the 368,000 packages on PyPI, it's a different world where what we need and expect from the Standard Library. Brett Cannon and Christian Heimes have introduced PEP 594 which is the first step in trimming outdated and unmaintained older modules from the Standard Library. Join us to dive into the history and future of Python's Standard Library.

8 Huhti 20221h 20min

#359: Lifecycle of a machine learning project

#359: Lifecycle of a machine learning project

Are you working on or considering a machine learning project? On this episode, we'll meet three people from the MLOps community: Demetrios Brinkmann, Kate Kuznecova, and Vishnu Rachakonda. They are here to tell us about the lifecycle of a machine learning project. We'll talk about getting started with prototypes and choosing frameworks, the development process, and finally moving into deployment and production.

3 Huhti 20221h 7min

#358: Understanding Pandas visually with PandasTutor

#358: Understanding Pandas visually with PandasTutor

Pandas is a great library that allows you to accomplish a ton of filtering and processing in condensed syntax. But how well do you understand what's happening? Sam Lau and Philip Guo built a great site to help use visually explore how Pandas is processing your dataset with your specific syntax. It's called PandasTutor, and Sam is here to tell us about it.

25 Maalis 202246min