The Discovery of Genomic Imprinting (Azim Surani)
Epigenetics Podcast19 Kesä 2025

The Discovery of Genomic Imprinting (Azim Surani)

In this episode, Professor Asim Surani, shares how his extensive research has significantly advanced the understanding of how the mammalian germline is specified, the mechanisms governing epigenetic reprogramming, and the critical conditions that maintain genomic integrity during early development. The discussion, led by Dr. Stefan Dillinger, provides an overview of Surani's journey into biology, the evolution of his research interests, and the pivotal discoveries that have shaped the field of epigenetics.

Dr. Surani discusses the groundbreaking experiment he co-conducted in 1984 that led to the discovery of genomic imprinting. Initially a student involved in in vitro fertilization at Cambridge, he became intrigued by the implications of parthenogenesis in mammals. Challenging the prevailing cytoplasmic theory of development, Surani and his collaborators demonstrated that normal mammalian development requires contributions from both parental genomes, leading to the introduction of the concept of genomic imprinting—a term Surani defended to describe the phenomenon that he and his team observed.

Surani's research then evolved toward understanding the mechanisms of genomic imprinting, particularly the role of DNA methylation. Throughout the interview, he details specific experiments that elucidated how genes could exhibit imprinted expression depending on the parental lineage, highlighting the importance of epigenetic factors in gene regulation. The revelation that DNA methylation marks were responsible for imprinting solidified the connection between genetic information and epigenetic influence in development.

The conversation dives deeper into the mechanisms involved in germline specification and epigenetic reprogramming. Surani explains his transition into studying mammalian germline development and the intricacies of primordial germ cell specification. Working with his team, he utilized single-cell approaches to investigate gene expression profiles specific to germ cells, identifying critical factors like PRDM1 and PRDM14 that repress somatic gene programs while initiating germline-specific pathways. This work underscored the complex interplay of genetic and epigenetic factors that govern the development of germ cells.

Another focus of the interview is the comparison of epigenetic resetting between mouse and human germlines. Surani addresses key differences in the timing and mechanisms of epigenetic reprogramming in humans, particularly the involvement of specific factors such as SOX17, which emerged as a crucial player in human germline specification, contrary to his earlier expectations. The discussion also highlights the technical challenges researchers face when studying human embryos due to ethical constraints, driving innovation in model systems such as stem cells to explore germline development.

References
  • Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984 Apr 5-11;308(5959):548-50. doi: 10.1038/308548a0. PMID: 6709062.

  • Surani MA, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986 Apr 11;45(1):127-36. doi: 10.1016/0092-8674(86)90544-1. PMID: 3955655.

  • Ohinata Y, Payer B, O'Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005 Jul 14;436(7048):207-13. doi: 10.1038/nature03813. Epub 2005 Jun 5. PMID: 15937476.

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008 Apr 17;452(7189):877-81. doi: 10.1038/nature06714. Epub 2008 Mar 19. PMID: 18354397; PMCID: PMC3847605.

Related Episodes

Contact

Jaksot(168)

Influence of Histone Variants on Chromatin Structure and Metabolism (Markus Buschbeck)

Influence of Histone Variants on Chromatin Structure and Metabolism (Markus Buschbeck)

In this episode of the Epigenetics Podcast, we sat down with Marcus Buschbeck, Group Leader at the Josep Carreras Leukaemia Research Institute in Barcelona, to talk about his work on the histone varia...

16 Joulu 201931min

Epigenetic Mechanisms of Aging and Longevity (Shelley Berger)

Epigenetic Mechanisms of Aging and Longevity (Shelley Berger)

In this Episode we sat down with Shelley Berger, Keynote Speaker at the "EMBO | EMBL Symposium: Metabolism Meets Epigenetics" to talk about her work on Epigenetic Mechanisms of Aging and Longevity. On...

21 Marras 201938min

Epigenetics & Glioblastoma: New Approaches to Treat Brain Cancer (Lucy Stead)

Epigenetics & Glioblastoma: New Approaches to Treat Brain Cancer (Lucy Stead)

In this Episode of the Epigenetics Podcast our guest Lucy Stead from the University of Leeds provides insight into her work on intratumor heterogeneity in Glioblastoma. In order to tackle this area sh...

15 Loka 201943min

The Past, Present, and Future of Epigenetics (Joe Fernandez, founder of Active Motif)

The Past, Present, and Future of Epigenetics (Joe Fernandez, founder of Active Motif)

Joe Fernandez, the founder of Active Motif, has played a significant role in the evolution of the biotechnology industry. He’s seen where the industry has been, and he has a good idea where it’s going...

5 Syys 201923min

The Interchromatin Network Model (Ana Pombo)

The Interchromatin Network Model (Ana Pombo)

In this Episode of the Epigenetics Podcast our guest Ana Pombo from the Max-Delbrück-Center in Berlin provides insight in her work on the interplay between gene regulation and genome architecture. To ...

12 Elo 201929min

Dosage Compensation in Drosophila (Asifa Akhtar)

Dosage Compensation in Drosophila (Asifa Akhtar)

Dosage compensation is an essential process to regulate the gene expression of the X-chromosome in female and male flies. Thereby the mechanism of regulation in humans and in drosophila is different. ...

16 Heinä 201936min

Spatial Organization of the Human Genome (Wendy Bickmore)

Spatial Organization of the Human Genome (Wendy Bickmore)

In recent years it has become more and more evident, that genome folding and chromatin packaging into the nucleus plays a pivotal role in the regulation of gene expression. In this Episode of our Podc...

11 Kesä 201931min

Heterochromatin and Phase Separation (Gary Karpen)

Heterochromatin and Phase Separation (Gary Karpen)

Heterochromatin plays a pivotal role in organizing our genome in the nucleus and separating active from inactive genomic regions. In this Podcast Episode our Guest Gary Karpen from UC Berkeley sits do...

9 Touko 201934min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
tiedekulma-podcast
rss-poliisin-mieli
docemilia
rss-duodecim-lehti
utelias-mieli
filocast-filosofian-perusteet
rss-laakaripodi
rss-opeklubi
rss-lihavuudesta-podcast
rss-sosiopodi
sotataidon-ytimessa
mielipaivakirja
radio-antro
rss-radplus
rss-luontopodi-samuel-glassar-tutkii-luonnon-ihmeita