Distilling Transformers and Diffusion Models for Robust Edge Use Cases with Fatih Porikli - #738

Distilling Transformers and Diffusion Models for Robust Edge Use Cases with Fatih Porikli - #738

Today, we're joined by Fatih Porikli, senior director of technology at Qualcomm AI Research for an in-depth look at several of Qualcomm's accepted papers and demos featured at this year’s CVPR conference. We start with “DiMA: Distilling Multi-modal Large Language Models for Autonomous Driving,” an end-to-end autonomous driving system that incorporates distilling large language models for structured scene understanding and safe planning motion in critical "long-tail" scenarios. We explore how DiMA utilizes LLMs' world knowledge and efficient transformer-based models to significantly reduce collision rates and trajectory errors. We then discuss “SharpDepth: Sharpening Metric Depth Predictions Using Diffusion Distillation,” a diffusion-distilled approach that combines generative models with metric depth estimation to produce sharp, accurate monocular depth maps. Additionally, Fatih also shares a look at Qualcomm’s on-device demos, including text-to-3D mesh generation, real-time image-to-video and video-to-video generation, and a multi-modal visual question-answering assistant. The complete show notes for this episode can be found at https://twimlai.com/go/738.

Suosittua kategoriassa Politiikka ja uutiset

rss-ootsa-kuullut-tasta
aikalisa
tervo-halme
ootsa-kuullut-tasta-2
politiikan-puskaradio
otetaan-yhdet
rss-podme-livebox
et-sa-noin-voi-sanoo-esittaa
rss-vaalirankkurit-podcast
rss-lets-talk-about-hair
aihe
linda-maria
rss-polikulaari-humanisti-vastaa-ja-muut-ts-podcastit
rss-kaikki-uusiksi
rss-merja-mahkan-rahat
rss-kuka-mina-olen
rss-mikin-takana
rss-raha-talous-ja-politiikka
rss-terveisia-seelannista
rss-toisten-taskuilla