How BRD4 and H2BE Influence Neuronal Activity (Erica Korb)

How BRD4 and H2BE Influence Neuronal Activity (Erica Korb)

In this episode of the Epigenetics Podcast, we talked with Erica Korb from the University of Pennsylvania about her work on BRD4 and the histone variant H2BE, which influences synaptic genes and neuronal activity.

Dr. Korb discusses the focus of her lab, which centers on epigenetic mechanisms impacting gene regulation in neurons. Her research primarily examines histone biology and its connection to neurodevelopmental disorders, including autism spectrum disorder and intellectual disabilities. Dr. Korb expounds on the collaborative environment at UPenn’s Epigenetics Institute, emphasizing how the rich diversity of research topics fosters innovative ideas and projects within the community.

Reflecting on her earlier work from her postdoctoral studies, Dr. Korb discusses her first significant findings regarding the protein BRD4. This work demonstrated BRD4's role in mediating transcriptional regulation crucial for learning and memory processes. She explains how disrupting this protein's function in neurons hindered critical gene activations required for memory formation in mice. This foundational understanding opened avenues for exploring the broader implications of chromatin regulation in various neurodevelopmental conditions.

Transitioning into her current research endeavors, Dr. Korb reveals how she aims to expand her focus beyond Fragile X syndrome. With her lab now investigating multiple chromatin regulators implicated in various forms of autism spectrum disorders, she describes a recent project where RNA sequencing exposed substantial overlaps in gene expression changes associated with five distinct chromatin modifiers, each contributing uniquely to neuronal function while collectively demonstrating sensitivity to chromatin disruptions.

A significant portion of the discussion centers around Dr. Korb’s unexpected exploration into how COVID-19 intersects with chromatin biology through a phenomenon known as histone mimicry. Leveraging bioinformatic tools during the pandemic, her lab discovered that certain viral proteins mimic histone sequences, which may lead to altered transcriptional outputs in host cells. This coincidental finding illustrates both the creative adaptability needed in scientific research and the importance of collaborative efforts across disciplines to uncover new insights.

The conversation also delves into Dr. Korb’s recent work regarding the histone variant H2BE, initiated by one of her graduate students. She explains how prior research only recognized H2BE's expression in the olfactory system, yet her lab has demonstrated its significant role in regulating synaptic genes and memory formation throughout broader neuronal contexts. Notably, they identified a single amino acid change that influences H2BE's function in chromatin accessibility and gene transcription, emphasizing its potential evolutionary conservation across species.

In terms of H2BE's role, Dr. Korb elucidates that its activity is integral in response to extracellular stimuli, particularly within the context of neuronal activation. Intriguingly, they found that H2BE expression decreases in reaction to long-term neuronal stimulation, suggesting a complex mechanism of homeostatic plasticity crucial for regulating neuronal activity levels. This research not only advances understanding of chromatin dynamics but also holds implications for neuronal health and disease mechanisms.

References
  • Feierman, E. R., Louzon, S., Prescott, N. A., Biaco, T., Gao, Q., Qiu, Q., Choi, K., Palozola, K. C., Voss, A. J., Mehta, S. D., Quaye, C. N., Lynch, K. T., Fuccillo, M. V., Wu, H., David, Y., & Korb, E. (2024). Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. Molecular cell, 84(15), 2822–2837.e11. https://doi.org/10.1016/j.molcel.2024.06.025

  • Korb, E., Herre, M., Zucker-Scharff, I., Gresack, J., Allis, C. D., & Darnell, R. B. (2017). Excess Translation of Epigenetic Regulators Contributes to Fragile X Syndrome and Is Alleviated by Brd4 Inhibition. Cell, 170(6), 1209–1223.e20. https://doi.org/10.1016/j.cell.2017.07.033

  • Kee, J., Thudium, S., Renner, D. M., Glastad, K., Palozola, K., Zhang, Z., Li, Y., Lan, Y., Cesare, J., Poleshko, A., Kiseleva, A. A., Truitt, R., Cardenas-Diaz, F. L., Zhang, X., Xie, X., Kotton, D. N., Alysandratos, K. D., Epstein, J. A., Shi, P. Y., Yang, W., … Korb, E. (2022). SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature, 610(7931), 381–388. https://doi.org/10.1038/s41586-022-05282-z

  • Feierman, E. R., Paranjapye, A., Su, S., Qiu, Q., Wu, H., & Korb, E. (2024). Histone variant H2BE controls activity-dependent gene expression and homeostatic scaling. bioRxiv : the preprint server for biology, 2024.11.01.620920. https://doi.org/10.1101/2024.11.01.620920

Related Episodes

Contact

Jaksot(167)

Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

Evolutionary Forces Shaping Mammalian Gene Regulation (Emily Wong)

In this episode of the Epigenetics Podcast, we talked with Emily Wong from the University of New South Wales in Sydney about her work on how evolution shapes mammalian genes. As the head of the Regula...

18 Syys 202542min

Chromatin Evolution (Arnau Sebé-Pedrós)

Chromatin Evolution (Arnau Sebé-Pedrós)

In this episode of the Epigenetics Podcast, we talked with Arnau Sebé-Pedrós from the Center for Genomic Regulation in Barcelona about his work on chromatin evolution. The Interview starts by examinin...

4 Syys 202546min

Epigenetic Mechanisms in Breast Cancer (Luca Magnani)

Epigenetic Mechanisms in Breast Cancer (Luca Magnani)

In this episode of the Epigenetics Podcast, we talked with Luca Magnani from Institute of Cancer Research and UNIMI in Milan about his work on epigenetic mechanisms of drug resistance and cancer cell ...

21 Elo 202537min

Mapping the Epigenome: From Arabidopsis to the Human Brain (Joseph Ecker)

Mapping the Epigenome: From Arabidopsis to the Human Brain (Joseph Ecker)

In this episode of the Epigenetics Podcast, we talked with Dr. Joseph Ecker from the Salk Institute about his work on high-resolution genome-wide mapping technologies, specifically how the regulation ...

24 Heinä 202544min

The Human Cell Atlas (Sarah Teichmann)

The Human Cell Atlas (Sarah Teichmann)

In this episode of the Epigenetics Podcast, we talked with Sarah Teichmann from the University of Cambridge about the Human Cell Atlas. In the Interview we explore Sarah Teichmann's impressive career ...

10 Heinä 202546min

The Discovery of Genomic Imprinting (Azim Surani)

The Discovery of Genomic Imprinting (Azim Surani)

In this episode, Professor Asim Surani, shares how his extensive research has significantly advanced the understanding of how the mammalian germline is specified, the mechanisms governing epigenetic r...

19 Kesä 202556min

Exploring DNA Methylation and TET Enzymes in Early Development (Petra Hajkova)

Exploring DNA Methylation and TET Enzymes in Early Development (Petra Hajkova)

In this episode of the Epigenetics Podcast, we talked with Petra Hajkova from the MRC Laboratory of Medical Sciences about her work on epigenetics research on mammalian development, highlighting DNA m...

5 Kesä 202539min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
tiedekulma-podcast
rss-lihavuudesta-podcast
utelias-mieli
rss-duodecim-lehti
rss-laakaripodi
rss-opeklubi
docemilia
hippokrateen-vastaanotolla
mielipaivakirja
radio-antro
rss-mental-race
rss-ylistys-elaimille