Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

In this episode of the Epigenetics Podcast, we talked with Vincent Pasque from KU Leuven about his work on the reprogramming of cell identity through epigenetic mechanisms, particularly during early development and cellular reprogramming.

We begin by tracing Vincent's journey into biology, sparked by early childhood experiences in nature and meaningful encounters with inspiring teachers. His fascination with the complexities of biology crystallized during a pivotal moment while listening to a radio segment on epigenetics in the late '90s, which led him to pursue studies in genetics and biochemistry. This formative path brought him to leading institutions, including the prestigious lab of John Gurdon, where he explored the phenomenon of nuclear reprogramming. Vincent recounts his early experiments that led to the discovery of macro H2A as a barrier to reprogramming, emphasizing the core challenge of erasing somatic cell identity.

As the conversation unfolds, Vincent introduces us to critical findings from his research. He shares how the inactive X chromosome serves as a compelling model to investigate epigenetic regulation, revealing that the dynamics of reprogramming and differentiation are far from simple reversals of development. He highlights the significant differences between male and female iPSCs and how X-linked genes influence DNA methylation and differentiation rates in these cells. The implications of these findings extend beyond developmental biology to inform our understanding of diseases, particularly cancer.

Transitioning to his current work, Vincent describes pioneering advances in characterizing the chromatin-associated proteome during the differentiation of human pluripotent stem cells. The surprising discovery of elevated histone modifications in naïve cells leads to intriguing questions about the barriers to cellular plasticity and the mechanisms by which cells resist alternative fate conversions. The potential applications of this research could reshape our approach to regenerative medicine and therapeutic interventions.

References
  • Pasque V, Gillich A, Garrett N, Gurdon JB. Histone variant macroH2A confers resistance to nuclear reprogramming. The EMBO Journal. 2011 May;30(12):2373-2387. DOI: 10.1038/emboj.2011.144. PMID: 21552206; PMCID: PMC3116279.

  • Jullien, J., Miyamoto, K., Pasque, V., Allen, G. E., Bradshaw, C. R., Garrett, N. J., Halley-Stott, R. P., Kimura, H., Ohsumi, K., & Gurdon, J. B. (2014). Hierarchical Molecular Events Driven by Oocyte-Specific Factors Lead to Rapid and Extensive Reprogramming. Molecular Cell, 55(4), 524–536. https://doi.org/10.1016/j.molcel.2014.06.024

  • Pasque V, Tchieu J, Karnik R, et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell. 2014 Dec;159(7):1681-1697. DOI: 10.1016/j.cell.2014.11.040. PMID: 25525883; PMCID: PMC4282187.

  • Zijlmans DW, Talon I, Verhelst S, et al. Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nature Cell Biology. 2022 Jun;24(6):858-871. DOI: 10.1038/s41556-022-00932-w. PMID: 35697783; PMCID: PMC9203278.

Related Episodes Contact

Jaksot(167)

The Interplay of Nutrition, Metabolic Pathways, and Epigenetic Regulation (Ferdinand von Meyenn)

The Interplay of Nutrition, Metabolic Pathways, and Epigenetic Regulation (Ferdinand von Meyenn)

In this episode of the Epigenetics Podcast, we talked with Ferdinand von Meyenn from ETH Zürich about his work on the interplay of nutrition, metabolic pathways, and epigenetic regulation. To start Dr...

23 Tammi 202548min

Single-Molecule Adenine Methylated Oligonucleosome Sequencing Assay (SAMOSA) (Vijay Ramani)

Single-Molecule Adenine Methylated Oligonucleosome Sequencing Assay (SAMOSA) (Vijay Ramani)

In this episode of the Epigenetics Podcast, we talked with Vijay Ramani from the Gladstone Institute about his work on Single-Molecule Adenine Methylated Oligonucleosome Sequencing Assay (SAMOSA). Our...

9 Tammi 202552min

Epigenetic Consequences of DNA Methylation in Development (Maxim Greenberg)

Epigenetic Consequences of DNA Methylation in Development (Maxim Greenberg)

In this episode of the Epigenetics Podcast, we talked with Maxim Greenberg from the Institute Jacob Monot about his work on epigenetic consequences of DNA methylation in development. In this interview...

19 Joulu 202444min

R-Loop Biology in Health and Disease (Natalia Gromak)

R-Loop Biology in Health and Disease (Natalia Gromak)

In this episode of the Epigenetics Podcast, we talked with Natalia Gromak from the University of Oxford about her work on R-Loop biology in health and disease. In this interview Dr. Gromak delves into...

5 Joulu 202429min

The Menin-MLL Complex and Small Molecule Inhibitors (Yadira Soto-Feliciano)

The Menin-MLL Complex and Small Molecule Inhibitors (Yadira Soto-Feliciano)

In this episode of the Epigenetics Podcast, we talked with Yadira Soto-Feliciano from MIT about her work on the Menin-MLL complex and the effect of small molecules on its stability in leukemia. We exp...

21 Marras 202440min

Grant Writing in Academia and Industry – Tips for Success (Mary Anne Jelinek)

Grant Writing in Academia and Industry – Tips for Success (Mary Anne Jelinek)

In this episode of the Epigenetics Podcast, we talked with Mary Anne Jelinek Associate Director of R&D at Active Motif about writing and reviewing grants in academia and industry. Learn from Dr. Jelin...

14 Marras 202439min

DNase Hypersensitive Sites and Chromatin Remodeling Enzymes (Carl Wu)

DNase Hypersensitive Sites and Chromatin Remodeling Enzymes (Carl Wu)

In this episode of the Epigenetics Podcast, we talked with Carl Wu from John's Hopkins University about his work on nucleosome remodeling, histone variants, and the role of single-molecule imaging in ...

31 Loka 202455min

Epigenetic Mechanisms of Mammalian Germ Cell Development (Mitinori Saitou)

Epigenetic Mechanisms of Mammalian Germ Cell Development (Mitinori Saitou)

In this episode of the Epigenetics Podcast, we talked with Mitinori Saitou from Kyoto University about his work on germ cell development, focusing on proteins like BLIMP1 and PRDM14, reprogramming iPS...

17 Loka 202439min

Suosittua kategoriassa Tiede

rss-mita-tulisi-tietaa
rss-poliisin-mieli
tiedekulma-podcast
rss-lihavuudesta-podcast
utelias-mieli
rss-duodecim-lehti
rss-laakaripodi
rss-opeklubi
docemilia
hippokrateen-vastaanotolla
mielipaivakirja
radio-antro
rss-mental-race
rss-ylistys-elaimille