AI at the NASA Frontier Development Lab with Sara Jennings, Timothy Seabrook and Andres Rodriguez

AI at the NASA Frontier Development Lab with Sara Jennings, Timothy Seabrook and Andres Rodriguez

This week on the podcast we’re featuring a series of conversations from the NIPs conference in Long Beach, California. I attended a bunch of talks and learned a ton, organized an impromptu roundtable on Building AI Products, and met a bunch of great people, including some former TWiML Talk guests. In this episode i'm joined by Sara Jennings, Timothy Seabrook and Andres Rodriguez to discuss NASA’s Frontier Development Lab or FDL. The FDL is an intense 8-week applied AI research accelerator, focused on tackling knowledge gaps useful to the space program. In our discussion, Sara, producer at the FDL, provides some insight into its goals and structure. Timothy, a researcher at FDL, describes his involvement with the program, including some of the projects he worked on while on-site. He also provides a look into some of this year’s FDL projects, including Planetary Defense, Solar Storm Prediction, and Lunar Water Location. Last but not least, Andres, Sr. Principal Engineer at Intel's AIPG, joins us to detail Intel’s support of the FDL, and how the various elements of the Intel AI stack supported the FDL research. This is a jam packed conversation, so be sure to check the show notes page at twimlai.com/talk/89 for all the links and tidbits from this episode.

Episoder(766)

Learning with Limited Labeled Data with Shioulin Sam - TWiML Talk #255

Learning with Limited Labeled Data with Shioulin Sam - TWiML Talk #255

Today we’re joined by Shioulin Sam, Research Engineer with Cloudera Fast Forward Labs. Shioulin and I caught up to discuss the newest report to come out of CFFL, “Learning with Limited Label Data,” which explores active learning as a means to build applications requiring only a relatively small set of labeled data. We start our conversation with a review of active learning and some of the reasons why it’s recently become an interesting technology for folks building systems based on deep learning

22 Apr 201944min

cuDF, cuML & RAPIDS: GPU Accelerated Data Science with Paul Mahler - TWiML Talk #254

cuDF, cuML & RAPIDS: GPU Accelerated Data Science with Paul Mahler - TWiML Talk #254

Today we're joined by Paul Mahler, senior data scientist and technical product manager for ML at NVIDIA. In our conversation, Paul and I discuss NVIDIA's RAPIDS open source project, which aims to bring GPU acceleration to traditional data science workflows and ML tasks. We dig into the various subprojects like cuDF and cuML that make up the RAPIDS ecosystem, as well as the role of lower-level libraries like mlprims and the relationship to other open-source projects like Scikit-learn, XGBoost and Dask.

19 Apr 201938min

Edge AI for Smart Manufacturing with Trista Chen - TWiML Talk #253

Edge AI for Smart Manufacturing with Trista Chen - TWiML Talk #253

Today we’re joined by Trista Chen, chief scientist of machine learning at Inventec, who spoke on “Edge AI in Smart Manufacturing: Defect Detection and Beyond” at GTC. In our conversation, we discuss the challenges that Industry 4.0 initiatives aim to address and dig into a few of the various use cases she’s worked on, such as the deployment of ML in an industrial setting to perform various tasks. We also discuss the challenges associated with estimating the ROI of industrial AI projects.

18 Apr 201938min

Machine Learning for Security and Security for Machine Learning with Nicole Nichols - TWiML Talk #252

Machine Learning for Security and Security for Machine Learning with Nicole Nichols - TWiML Talk #252

Today we’re joined by Nicole Nichols, a senior research scientist at the Pacific Northwest National Lab. We discuss her recent presentation at GTC, which was titled “Machine Learning for Security, and Security for Machine Learning.” We explore two use cases, insider threat detection, and software fuzz testing, discussing the effectiveness of standard and bidirectional RNN language models for detecting malicious activity, the augmentation of software fuzzing techniques using deep learning, and much mor

16 Apr 201941min

Domain Adaptation and Generative Models for Single Cell Genomics with Gerald Quon - TWiML Talk #251

Domain Adaptation and Generative Models for Single Cell Genomics with Gerald Quon - TWiML Talk #251

Today we’re joined by Gerald Quon, assistant professor at UC Davis. Gerald presented his work on Deep Domain Adaptation and Generative Models for Single Cell Genomics at GTC this year, which explores single cell genomics as a means of disease identification for treatment. In our conversation, we discuss how he uses deep learning to generate novel insights across diseases, the different types of data that was used, and the development of ‘nested’ Generative Models for single cell measurement.

15 Apr 201932min

Mapping Dark Matter with Bayesian Neural Networks w/ Yashar Hezaveh - TWiML Talk #250

Mapping Dark Matter with Bayesian Neural Networks w/ Yashar Hezaveh - TWiML Talk #250

Today we’re joined by Yashar Hezaveh, Assistant Professor at the University of Montreal. Yashar and I caught up to discuss his work on gravitational lensing, which is the bending of light from distant sources due to the effects of gravity. In our conversation, Yashar and I discuss how ML can be applied to undistort images, the intertwined roles of simulation and ML in generating images, incorporating other techniques such as domain transfer or GANs, and how he assesses the results of this project.

11 Apr 201934min

Deep Learning for Population Genetic Inference with Dan Schrider - TWiML Talk #249

Deep Learning for Population Genetic Inference with Dan Schrider - TWiML Talk #249

Today we’re joined by Dan Schrider, assistant professor in the department of genetics at UNC Chapel Hill. My discussion with Dan starts with an overview of population genomics, looking into his application of ML in the field. We then dig into Dan’s paper “The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference,” which examines the idea that CNNs are capable of outperforming expert-derived statistical methods for some key problems in the field.

9 Apr 201949min

Empathy in AI with Rob Walker - TWiML Talk #248

Empathy in AI with Rob Walker - TWiML Talk #248

Today we’re joined by Rob Walker, Vice President of Decision Management at Pegasystems. Rob joined us back in episode 127 to discuss “Hyperpersonalizing the customer experience.” Today, he’s back for a discussion about the role of empathy in AI systems. In our conversation, we dig into the role empathy plays in consumer-facing human-AI interactions, the differences between empathy and ethics, and a few examples of ways empathy should be considered when enterprise AI systems.

5 Apr 201940min

Populært innen Politikk og nyheter

giver-og-gjengen-vg
aftenpodden
popradet
aftenpodden-usa
forklart
stopp-verden
bt-dokumentar-2
det-store-bildet
dine-penger-pengeradet
nokon-ma-ga
fotballpodden-2
aftenbla-bla
frokostshowet-pa-p5
e24-podden
rss-dannet-uten-piano
rss-fredrik-og-zahid-loser-ingenting
rss-ness
rss-penger-polser-og-politikk
unitedno
liverpoolno-pausepraten