Trends in Deep Reinforcement Learning with Kamyar Azizzadenesheli - #560

Trends in Deep Reinforcement Learning with Kamyar Azizzadenesheli - #560

Today we’re joined by Kamyar Azizzadenesheli, an assistant professor at Purdue University, to close out our AI Rewind 2021 series! In this conversation, we focused on all things deep reinforcement learning, starting with a general overview of the direction of the field, and though it might seem to be slowing, thats just a product of the light being shined constantly on the CV and NLP spaces. We dig into themes like the convergence of RL methodology with both robotics and control theory, as well as a few trends that Kamyar sees over the horizon, such as self-supervised learning approaches in RL. We also talk through Kamyar’s predictions for RL in 2022 and beyond. This was a fun conversation, and I encourage you to look through all the great resources that Kamyar shared on the show notes page at twimlai.com/go/560!

Episoder(766)

Towards the Self-Driving Enterprise with Kirk Borne - TWiML Talk #151

Towards the Self-Driving Enterprise with Kirk Borne - TWiML Talk #151

In this show, the first of our PegaWorld 18 series, I'm joined by Kirk Borne, Principal Data Scientist at management consulting firm Booz Allen Hamilton. In our conversation, Kirk shares his views on automation as it applies to enterprises and their customers. We discuss his experiences evangelizing data science within the context of a large organization, and the role of AI in helping organizations achieve automation. Along the way Kirk, shares a great analogy for intelligent automation, comparing it to an autonomous vehicle . We covered a ton of ground in this chat, which I think you’ll get a kick out of. The notes for this show can be found at twimlai.com/talk/151. For more info about our PegaWorld 2018 Series, visit twimlai.com/pegaworld2018.

18 Jun 201841min

How a Global Energy Company Adopts ML & AI with Nicholas Osborn - TWiML Talk #150

How a Global Energy Company Adopts ML & AI with Nicholas Osborn - TWiML Talk #150

On today’s show I’m excited to share this interview with Nick Osborn, a longtime listener of the show and Leader of the Global Machine Learning Project Management Office at AES Corporation, a Fortune 200 power company. Nick and I met at my AI Summit a few weeks back, and after a brief chat about some of the things he was up to at AES, I knew I needed to get him on the show! In this interview, Nick and I explore how AES is implementing machine learning across multiple domains at the company. We dig into several examples falling under the Natural Language, Computer Vision, and Cognitive Assets categories he’s established for his projects. Along the way we cover some of the key podcast episodes that helped Nick discover potentially applicable ML techniques, and how those are helping his team broaden the use of machine learning at AES. This was a fun and informative conversation that has a lot to offer. Thanks, Nick! The notes for this episode can be found at twimlai.com/talk/150.

14 Jun 201846min

Problem Formulation for Machine Learning with Romer Rosales - TWiML Talk #149

Problem Formulation for Machine Learning with Romer Rosales - TWiML Talk #149

In this episode, i'm joined by Romer Rosales, Director of AI at LinkedIn. We begin with a discussion of graphical models and approximate probability inference, and he helps me make an important connection in the way I think about that topic. We then review some of the applications of machine learning at LinkedIn, and how what Romer calls their ‘holistic approach’ guides the evolution of ML projects at LinkedIn. This leads us into a really interesting discussion about problem formulation and selecting the right objective function for a given problem. We then talk through some of the tools they’ve built to scale their data science efforts, including large-scale constrained optimization solvers, online hyperparameter optimization and more. This was a really fun conversation, that I’m sure you’ll enjoy! The notes for this show can be found at twimlai.com/talk/149.

11 Jun 201850min

AI for Materials Discovery with Greg Mulholland - TWiML Talk #148

AI for Materials Discovery with Greg Mulholland - TWiML Talk #148

In this episode I’m joined by Greg Mulholland, Founder and CEO of Citrine Informatics, which is applying AI to the discovery and development of new materials. Greg and I start out with an exploration of some of the challenges of the status quo in materials science, and what’s to be gained by introducing machine learning into this process. We discuss how limitations in materials manifest themselves, and Greg shares a few examples from the company’s work optimizing battery components and solar cells. We dig into the role and sources of data used in applying ML in materials, and some of the unique challenges to collecting it, and discuss the pipeline and algorithms Citrine uses to deliver its service. This was a fun conversation that spans physics, chemistry, and of course machine learning, and I hope you enjoy it. The notes for this show can be found at twimlai.com/talk/148.

7 Jun 201842min

Data Innovation & AI at Capital One with Adam Wenchel - TWiML Talk #147

Data Innovation & AI at Capital One with Adam Wenchel - TWiML Talk #147

In this episode I’m joined by Adam Wenchel, vice president of AI and Data Innovation at Capital One, to discuss how Machine Learning & AI are being integrated into their day-to-day practices, and how those advances benefit the customer. In our conversation, we look into a few of the many applications of AI at the bank, including fraud detection, money laundering, customer service, and automating back office processes. Adam describes some of the challenges of applying ML in financial services and how Capital One maintains consistent portfolio management practices across the organization. We also discuss how the bank has organized to scale their machine learning efforts, and the steps they’ve taken to overcome the talent shortage in the space. The notes for this show can be found at twimlai.com/talk/147.

4 Jun 201845min

Deep Gradient Compression for Distributed Training with Song Han - TWiML Talk #146

Deep Gradient Compression for Distributed Training with Song Han - TWiML Talk #146

On today’s show I chat with Song Han, assistant professor in MIT’s EECS department, about his research on Deep Gradient Compression. In our conversation, we explore the challenge of distributed training for deep neural networks and the idea of compressing the gradient exchange to allow it to be done more efficiently. Song details the evolution of distributed training systems based on this idea, and provides a few examples of centralized and decentralized distributed training architectures such as Uber’s Horovod, as well as the approaches native to Pytorch and Tensorflow. Song also addresses potential issues that arise when considering distributed training, such as loss of accuracy and generalizability, and much more. The notes for this show can be found at twimlai.com/talk/146.

31 Mai 201846min

Masked Autoregressive Flow for Density Estimation with George Papamakarios - TWiML Talk #145

Masked Autoregressive Flow for Density Estimation with George Papamakarios - TWiML Talk #145

In this episode, University of Edinburgh Phd student George Papamakarios and I discuss his paper “Masked Autoregressive Flow for Density Estimation.” George walks us through the idea of Masked Autoregressive Flow, which uses neural networks to produce estimates of probability densities from a set of input examples. We discuss some of the related work that’s laid the groundwork for his research, including Inverse Autoregressive Flow, Real NVP and Masked Auto-encoders. We also look at the properties of probability density networks and discuss some of the challenges associated with this effort. The notes for this show can be found at twimlai.com/talk/145.

28 Mai 201834min

Training Data for Computer Vision at Figure Eight with Qazaleh Mirsharif - TWiML Talk #144

Training Data for Computer Vision at Figure Eight with Qazaleh Mirsharif - TWiML Talk #144

For today’s show, the last in our TrainAI series, I'm joined by Qazaleh Mirsharif, a machine learning scientist working on computer vision at Figure Eight. Qazaleh and I caught up at the TrainAI conference to discuss a couple of the projects she’s worked on in that field, namely her research into the classification of retinal images and her work on parking sign detection from Google Street View images. The former, which attempted to diagnose diseases like diabetic retinopathy using retinal scan images, is similar to the work I spoke with Ryan Poplin about on TWiML Talk #122. In my conversation with Qazaleh we focus on how she built her datasets for each of these projects and some of the key lessons she’s learned along the way. The notes for this show can be found at twimlai.com/talk/144. For series details, visit twimlai.com/trainai2018.

25 Mai 201821min

Populært innen Politikk og nyheter

giver-og-gjengen-vg
aftenpodden
popradet
aftenpodden-usa
forklart
stopp-verden
bt-dokumentar-2
det-store-bildet
dine-penger-pengeradet
nokon-ma-ga
fotballpodden-2
aftenbla-bla
frokostshowet-pa-p5
e24-podden
rss-dannet-uten-piano
rss-fredrik-og-zahid-loser-ingenting
rss-ness
rss-penger-polser-og-politikk
unitedno
liverpoolno-pausepraten