An Agentic Mixture of Experts for DevOps with Sunil Mallya - #708

An Agentic Mixture of Experts for DevOps with Sunil Mallya - #708

Today we're joined by Sunil Mallya, CTO and co-founder of Flip AI. We discuss Flip’s incident debugging system for DevOps, which was built using a custom mixture of experts (MoE) large language model (LLM) trained on a novel "CoMELT" observability dataset which combines traditional MELT data—metrics, events, logs, and traces—with code to efficiently identify root failure causes in complex software systems. We discuss the challenges of integrating time-series data with LLMs and their multi-decoder architecture designed for this purpose. Sunil describes their system's agent-based design, focusing on clear roles and boundaries to ensure reliability. We examine their "chaos gym," a reinforcement learning environment used for testing and improving the system's robustness. Finally, we discuss the practical considerations of deploying such a system at scale in diverse environments and much more. The complete show notes for this episode can be found at https://twimlai.com/go/708.

Episoder(778)

Advancements in Machine Learning with Sergey Levine - #355

Advancements in Machine Learning with Sergey Levine - #355

Today we're joined by Sergey Levine, an Assistant Professor at UC Berkeley. We last heard from Sergey back in 2017, where we explored Deep Robotic Learning. Sergey and his lab’s recent efforts have been focused on contributing to a future where machines can be “out there in the real world, learning continuously through their own experience.” We caught up with Sergey at NeurIPS 2019, where Sergey and his team presented 12 different papers -- which means a lot of ground to cover!

9 Mar 202043min

Secrets of a Kaggle Grandmaster with David Odaibo - #354

Secrets of a Kaggle Grandmaster with David Odaibo - #354

Imagine spending years learning ML from the ground up, from its theoretical foundations, but still feeling like you didn’t really know how to apply it. That’s where David Odaibo found himself in 2015, after the second year of his PhD. David’s solution was Kaggle, a popular platform for data science competitions. Fast forward four years, and David is now a Kaggle Grandmaster, the highest designation, with particular accomplishment in computer vision competitions, and co-founder and CTO of Analytical

5 Mar 202041min

NLP for Mapping Physics Research with Matteo Chinazzi - #353

NLP for Mapping Physics Research with Matteo Chinazzi - #353

Predicting the future of science, particularly physics, is the task that Matteo Chinazzi, an associate research scientist at Northeastern University focused on in his paper Mapping the Physics Research Space: a Machine Learning Approach. In addition to predicting the trajectory of physics research, Matteo is also active in the computational epidemiology field. His work in that area involves building simulators that can model the spread of diseases like Zika or the seasonal flu at a global scale.

2 Mar 202035min

Metric Elicitation and Robust Distributed Learning with Sanmi Koyejo - #352

Metric Elicitation and Robust Distributed Learning with Sanmi Koyejo - #352

The unfortunate reality is that many of the most commonly used machine learning metrics don't account for the complex trade-offs that come with real-world decision making. This is one of the challenges that Sanmi Koyejo, assistant professor at the University of Illinois, has dedicated his research to address. Sanmi applies his background in cognitive science, probabilistic modeling, and Bayesian inference to pursue his research which focuses broadly on “adaptive and robust machine learning.”

27 Feb 202056min

High-Dimensional Robust Statistics with Ilias Diakonikolas - #351

High-Dimensional Robust Statistics with Ilias Diakonikolas - #351

Today we’re joined by Ilias Diakonikolas, faculty in the CS department at the University of Wisconsin-Madison, and author of the paper Distribution-Independent PAC Learning of Halfspaces with Massart Noise, recipient of the NeurIPS 2019 Outstanding Paper award. The paper is regarded as the first progress made around distribution-independent learning with noise since the 80s. In our conversation, we explore robustness in ML, problems with corrupt data in high-dimensional settings, and of course, the paper.

24 Feb 202036min

How AI Predicted the Coronavirus Outbreak with Kamran Khan - #350

How AI Predicted the Coronavirus Outbreak with Kamran Khan - #350

Today we’re joined by Kamran Khan, founder & CEO of BlueDot, and professor of medicine and public health at the University of Toronto. BlueDot has been the recipient of a lot of attention for being the first to publicly warn about the coronavirus that started in Wuhan. How did the company’s system of algorithms and data processing techniques help flag the potential dangers of the disease? In our conversation, Kamran talks us through how the technology works, its limits, and the motivation behind the wor

19 Feb 202051min

Turning Ideas into ML Powered Products with Emmanuel Ameisen - #349

Turning Ideas into ML Powered Products with Emmanuel Ameisen - #349

Today we’re joined by Emmanuel Ameisen, machine learning engineer at Stripe, and author of the recently published book “Building Machine Learning Powered Applications; Going from Idea to Product.” In our conversation, we discuss structuring end-to-end machine learning projects, debugging and explainability in the context of models, the various types of models covered in the book, and the importance of post-deployment monitoring.

17 Feb 202042min

Algorithmic Injustices and Relational Ethics with Abeba Birhane - #348

Algorithmic Injustices and Relational Ethics with Abeba Birhane - #348

Today we’re joined by Abeba Birhane, PhD Student at University College Dublin and author of the recent paper Algorithmic Injustices: Towards a Relational Ethics, which was the recipient of the Best Paper award at the 2019 Black in AI Workshop at NeurIPS. In our conversation, break down the paper and the thought process around AI ethics, the “harm of categorization,” how ML generally doesn’t account for the ethics of various scenarios and how relational ethics could solve the issue, and much more.

13 Feb 202041min

Populært innen Politikk og nyheter

giver-og-gjengen-vg
aftenpodden
aftenpodden-usa
forklart
popradet
stopp-verden
dine-penger-pengeradet
det-store-bildet
nokon-ma-ga
fotballpodden-2
rss-gukild-johaug
aftenbla-bla
hanna-de-heldige
e24-podden
rss-ness
frokostshowet-pa-p5
bt-dokumentar-2
rss-penger-polser-og-politikk
unitedno
rss-borsmorgen-okonominyhetene