Adding Error Bars to Evals: A Statistical Approach to LM Evaluations | #llm #genai #anthropic #2024
AI Today27 Nov 2024

Adding Error Bars to Evals: A Statistical Approach to LM Evaluations | #llm #genai #anthropic #2024

Github: https://arxiv.org/pdf/2411.00640 This research paper advocates for incorporating rigorous statistical methods into the evaluation of large language models (LLMs). It introduces formulas for calculating standard errors and confidence intervals, emphasizing the importance of accounting for clustered data and paired comparisons between models. The paper details variance reduction techniques, including resampling and using next-token probabilities, and provides a sample-size formula for power analysis to determine the necessary number of evaluation questions. Ultimately, the authors aim to shift the focus from simply achieving the highest score to conducting statistically sound experiments that provide more reliable and informative insights into LLM capabilities. ai , llm , anthropic , artificial intelligence , arxiv , research , paper , publication , genai , generativeai, agentic

Populært innen Teknologi

romkapsel
rss-avskiltet
teknisk-sett
tomprat-med-gunnar-tjomlid
nasjonal-sikkerhetsmyndighet-nsm
energi-og-klima
rss-impressions-2
shifter
lydartikler-fra-aftenposten
elektropodden
fornybaren
hans-petter-og-co
smart-forklart
pedagogisk-intelligens
rss-alt-vi-kan
rss-fish-ships
teknologi-og-mennesker
rss-digitaliseringspadden
rss-ki-praten
rss-for-alarmen-gar