SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024
AI Today27 Nov 2024

SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with MotionAware Mem | #2024

Paper: https://arxiv.org/pdf/2411.11922 Github: https://github.com/yangchris11/samurai Blog: https://yangchris11.github.io/samurai/ The paper introduces SAMURAI, a novel visual object tracking method that enhances the Segment Anything Model 2 (SAM 2) for improved accuracy and robustness. SAMURAI addresses SAM 2's limitations in handling crowded scenes and occlusions by incorporating motion cues and a motion-aware memory selection mechanism. This allows SAMURAI to accurately track objects in real-time, even with rapid movement or self-occlusion, without requiring retraining. The method achieves state-of-the-art performance on various benchmarks, demonstrating its effectiveness and generalization capabilities. Code and results are publicly available. ai , computer vision , cv , university of washington , artificial intelligence , arxiv , research , paper , publication

Populært innen Teknologi

romkapsel
rss-avskiltet
teknisk-sett
tomprat-med-gunnar-tjomlid
nasjonal-sikkerhetsmyndighet-nsm
energi-og-klima
rss-impressions-2
shifter
lydartikler-fra-aftenposten
elektropodden
fornybaren
hans-petter-og-co
smart-forklart
pedagogisk-intelligens
rss-alt-vi-kan
rss-fish-ships
teknologi-og-mennesker
rss-digitaliseringspadden
rss-ki-praten
rss-for-alarmen-gar