OPENSCHOLAR: SYNTHESIZING SCIENTIFICLITERATURE WITH RETRIEVAL-AUGMENTED LMS | #ai #genai #llm #2024
AI Today27 Nov 2024

OPENSCHOLAR: SYNTHESIZING SCIENTIFICLITERATURE WITH RETRIEVAL-AUGMENTED LMS | #ai #genai #llm #2024

Paper: https://arxiv.org/pdf/2411.14199 Github: https://github.com/AkariAsai/OpenScholar The research introduces OpenScholar, a retrieval-augmented large language model (LLM) designed for synthesizing scientific literature. OpenScholar uses a large datastore of open-access papers and iterative self-feedback to generate high-quality responses to scientific questions, including accurate citations. A new benchmark, ScholarQABench, is introduced for evaluating open-ended scientific question answering, incorporating both automatic and human evaluations. Experiments demonstrate OpenScholar's superior performance compared to other LLMs and even human experts in certain aspects, particularly in terms of information coverage. Limitations of OpenScholar and ScholarQABench are discussed, alongside plans for open-sourcing the model and benchmark. ai , llm , retrieval augmented, rag , artificial intelligence , arxiv , research , paper , publication , genai , generativeai, agentic

Populært innen Teknologi

romkapsel
rss-avskiltet
teknisk-sett
tomprat-med-gunnar-tjomlid
nasjonal-sikkerhetsmyndighet-nsm
energi-og-klima
rss-impressions-2
shifter
lydartikler-fra-aftenposten
elektropodden
fornybaren
hans-petter-og-co
smart-forklart
pedagogisk-intelligens
rss-alt-vi-kan
rss-fish-ships
teknologi-og-mennesker
rss-digitaliseringspadden
rss-ki-praten
rss-for-alarmen-gar