The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.

Episoder(764)

Do You Dare Run Your ML Experiments in Production? with Ville Tuulos - #523

Do You Dare Run Your ML Experiments in Production? with Ville Tuulos - #523

Today we’re joined by a friend of the show and return guest Ville Tuulos, CEO and co-founder of Outerbounds. In our previous conversations with Ville, we explored his experience building and deploying the open-source framework, Metaflow, while working at Netflix. Since our last chat, Ville has embarked on a few new journeys, including writing the upcoming book Effective Data Science Infrastructure, and commercializing Metaflow, both of which we dig into quite a bit in this conversation.  We reintroduce the problem that Metaflow was built to solve and discuss some of the unique use cases that Ville has seen since it's release, the relationship between Metaflow and Kubernetes, and the maturity of services like batch and lambdas allowing a complete production ML system to be delivered. Finally, we discuss the degree to which Ville is catering is Outerbounds’ efforts to building tools for the MLOps community, and what the future looks like for him and Metaflow.  The complete show notes for this episode can be found at twimlai.com/go/523.

30 Sep 202140min

Delivering Neural Speech Services at Scale with Li Jiang - #522

Delivering Neural Speech Services at Scale with Li Jiang - #522

Today we’re joined by Li Jiang, a distinguished engineer at Microsoft working on Azure Speech.  In our conversation with Li, we discuss his journey across 27 years at Microsoft, where he’s worked on, among other things, audio and speech recognition technologies. We explore his thoughts on the advancements in speech recognition over the past few years, the challenges, and advantages, of using either end-to-end or hybrid models.  We also discuss the trade-offs between delivering accuracy or quality and the kind of runtime characteristics that you require as a service provider, in the context of engineering and delivering a service at the scale of Azure Speech. Finally, we walk through the data collection process for customizing a voice for TTS, what languages are currently supported, managing the responsibilities of threats like deep fakes, the future for services like these, and much more! The complete show notes for this episode can be found at twimlai.com/go/522.

27 Sep 202149min

AI’s Legal and Ethical Implications with Sandra Wachter - #521

AI’s Legal and Ethical Implications with Sandra Wachter - #521

Today we’re joined by Sandra Wacther, an associate professor and senior research fellow at the University of Oxford.  Sandra’s work lies at the intersection of law and AI, focused on what she likes to call “algorithmic accountability”. In our conversation, we explore algorithmic accountability in three segments, explainability/transparency, data protection, and bias, fairness and discrimination. We discuss how the thinking around black boxes changes when discussing applying regulation and law, as well as a breakdown of counterfactual explanations and how they’re created. We also explore why factors like the lack of oversight lead to poor self-regulation, and the conditional demographic disparity test that she helped develop to test bias in models, which was recently adopted by Amazon. The complete show notes for this episode can be found at twimlai.com/go/521.

23 Sep 202149min

Compositional ML and the Future of Software Development with Dillon Erb - #520

Compositional ML and the Future of Software Development with Dillon Erb - #520

Today we’re joined by Dillon Erb, CEO of Paperspace.  If you’re not familiar with Dillon, he joined us about a year ago to discuss Machine Learning as a Software Engineering Discipline; we strongly encourage you to check out that interview as well. In our conversation, we explore the idea of compositional AI, and if it is the next frontier in a string of recent game-changing machine learning developments. We also discuss a source of constant back and forth in the community around the role of notebooks, and why Paperspace made the choice to pivot towards a more traditional engineering code artifact model after building a popular notebook service. Finally, we talk through their newest release Workflows, an automation and build system for ML applications, which Dillon calls their “most ambitious and comprehensive project yet.” The complete show notes for this episode can be found at twimlai.com/go/520.

20 Sep 202141min

Generating SQL Database Queries from Natural Language with Yanshuai Cao - #519

Generating SQL Database Queries from Natural Language with Yanshuai Cao - #519

Today we’re joined by Yanshuai Cao, a senior research team lead at Borealis AI. In our conversation with Yanshuai, we explore his work on Turing, their natural language to SQL engine that allows users to get insights from relational databases without having to write code. We do a bit of compare and contrast with the recently released Codex Model from OpenAI, the role that reasoning plays in solving this problem, and how it is implemented in the model. We also talk through various challenges like data augmentation, the complexity of the queries that Turing can produce, and a paper that explores the explainability of this model. The complete show notes for this episode can be found at twimlai.com/go/519.

16 Sep 202138min

Social Commonsense Reasoning with Yejin Choi - #518

Social Commonsense Reasoning with Yejin Choi - #518

Today we’re joined by Yejin Choi, a professor at the University of Washington. We had the pleasure of catching up with Yejin after her keynote interview at the recent Stanford HAI “Foundational Models” workshop. In our conversation, we explore her work at the intersection of natural language generation and common sense reasoning, including how she defines common sense, and what the current state of the world is for that research. We discuss how this could be used for creative storytelling, how transformers could be applied to these tasks, and we dig into the subfields of physical and social common sense reasoning. Finally, we talk through the future of Yejin’s research and the areas that she sees as most promising going forward.  If you enjoyed this episode, check out our conversation on AI Storytelling Systems with Mark Riedl. The complete show notes for today’s episode can be found at twimlai.com/go/518.

13 Sep 202151min

Deep Reinforcement Learning for Game Testing at EA with Konrad Tollmar - #517

Deep Reinforcement Learning for Game Testing at EA with Konrad Tollmar - #517

Today we’re joined by Konrad Tollmar, research director at Electronic Arts and an associate professor at KTH.  In our conversation, we explore his role as the lead of EA’s applied research team SEED and the ways that they’re applying ML/AI across popular franchises like Apex Legends, Madden, and FIFA. We break down a few papers focused on the application of ML to game testing, discussing why deep reinforcement learning is at the top of their research agenda, the differences between training atari games and modern 3D games, using CNNs to detect glitches in games, and of course, Konrad gives us his outlook on the future of ML for games training. The complete show notes for this episode can be found at twimlai.com/go/517.

9 Sep 202140min

Exploring AI 2041 with Kai-Fu Lee - #516

Exploring AI 2041 with Kai-Fu Lee - #516

Today we’re joined by Kai-Fu Lee, chairman and CEO of Sinovation Ventures and author of AI 2041: Ten Visions for Our Future.  In AI 2041, Kai-Fu and co-author Chen Qiufan tell the story of how AI could shape our future through a series of 10 “scientific fiction” short stories. In our conversation with Kai-Fu, we explore why he chose 20 years as the time horizon for these stories, and dig into a few of the stories in more detail. We explore the potential for level 5 autonomous driving and what effect that will have on both established and developing nations, the potential outcomes when dealing with job displacement, and his perspective on how the book will be received. We also discuss the potential consequences of autonomous weapons, if we should actually worry about singularity or superintelligence, and the evolution of regulations around AI in 20 years. We’d love to hear from you! What are your thoughts on any of the stories we discuss in the interview? Will you be checking this book out? Let us know in the comments on the show notes page at twimlai.com/go/516.

6 Sep 202147min

Populært innen Politikk og nyheter

giver-og-gjengen-vg
aftenpodden
bt-dokumentar-2
forklart
aftenpodden-usa
stopp-verden
popradet
nokon-ma-ga
hva-star-du-for
fotballpodden-2
det-store-bildet
dine-penger-pengeradet
aftenbla-bla
e24-podden
frokostshowet-pa-p5
rss-dannet-uten-piano
rss-penger-polser-og-politikk
rss-ness
unitedno
rss-borsmorgen-okonominyhetene