Dynamic Token Merging for Efficient Byte-level Language Models with Julie Kallini - #724

Dynamic Token Merging for Efficient Byte-level Language Models with Julie Kallini - #724

Today, we're joined by Julie Kallini, PhD student at Stanford University to discuss her recent papers, “MrT5: Dynamic Token Merging for Efficient Byte-level Language Models” and “Mission: Impossible Language Models.” For the MrT5 paper, we explore the importance and failings of tokenization in large language models—including inefficient compression rates for under-resourced languages—and dig into byte-level modeling as an alternative. We discuss the architecture of MrT5, its ability to learn language-specific compression rates, its performance on multilingual benchmarks and character-level manipulation tasks, and its performance and efficiency. For the “Mission: Impossible Language Models” paper, we review the core idea behind the research, the definition and creation of impossible languages, the creation of impossible language training datasets, and explore the bias of language model architectures towards natural language. The complete show notes for this episode can be found at https://twimlai.com/go/724.

Populärt inom Politik & nyheter

svenska-fall
motiv
aftonbladet-krim
p3-krim
fordomspodden
rss-krimstad
rss-viva-fotboll
blenda-2
flashback-forever
aftonbladet-daily
rss-vad-fan-hande
rss-sanning-konsekvens
svd-nyhetsartiklar
rss-frandfors-horna
rss-krimreportrarna
krimmagasinet
dagens-eko
olyckan-inifran
rss-flodet
rss-expressen-dok