Distilling Transformers and Diffusion Models for Robust Edge Use Cases with Fatih Porikli - #738

Distilling Transformers and Diffusion Models for Robust Edge Use Cases with Fatih Porikli - #738

Today, we're joined by Fatih Porikli, senior director of technology at Qualcomm AI Research for an in-depth look at several of Qualcomm's accepted papers and demos featured at this year’s CVPR conference. We start with “DiMA: Distilling Multi-modal Large Language Models for Autonomous Driving,” an end-to-end autonomous driving system that incorporates distilling large language models for structured scene understanding and safe planning motion in critical "long-tail" scenarios. We explore how DiMA utilizes LLMs' world knowledge and efficient transformer-based models to significantly reduce collision rates and trajectory errors. We then discuss “SharpDepth: Sharpening Metric Depth Predictions Using Diffusion Distillation,” a diffusion-distilled approach that combines generative models with metric depth estimation to produce sharp, accurate monocular depth maps. Additionally, Fatih also shares a look at Qualcomm’s on-device demos, including text-to-3D mesh generation, real-time image-to-video and video-to-video generation, and a multi-modal visual question-answering assistant. The complete show notes for this episode can be found at https://twimlai.com/go/738.

Populärt inom Politik & nyheter

aftonbladet-krim
svenska-fall
motiv
p3-krim
fordomspodden
rss-krimstad
blenda-2
rss-viva-fotboll
flashback-forever
rss-sanning-konsekvens
aftonbladet-daily
rss-krimreportrarna
rss-frandfors-horna
dagens-eko
rss-vad-fan-hande
sydsvenskan-dok
olyckan-inifran
rss-svalan-krim
rss-flodet
krimmagasinet