[MINI] Cross Validation
Data Skeptic25 Jul 2014

[MINI] Cross Validation

This miniepisode discusses the technique called Cross Validation - a process by which one randomly divides up a dataset into numerous small partitions. Next, (typically) one is held out, and the rest are used to train some model. The hold out set can then be used to validate how good the model does at describing/predicting new data.

Episoder(588)

Translation Automation

Translation Automation

Today we are back with another episode discussing AI in the work field. AI has, is, and will continue to facilitate the automation of work done by humans. Sometimes this may be an entire role. Other times it may automate a particular part of their role, scaling their effectiveness. Carl Stimson, a Freelance Japanese to English translator, comes on the show to talk about his work in translation and his perspective about how AI will change translation in the future.

6 Jul 202136min

Time Series at the Beach

Time Series at the Beach

Shane Ross, Professor of Aerospace and Ocean Engineering at Virginia Tech University, comes on today to talk about his work "Beach-level 24-hour forecasts of Florida red tide-induced respiratory irritation."

28 Jun 202123min

Automatic Identification of Outlier Galaxy Images

Automatic Identification of Outlier Galaxy Images

Lior Shamir, Associate Professor of Computer Science at Kansas University, joins us today to talk about the recent paper Automatic Identification of Outliers in Hubble Space Telescope Galaxy Images. Follow Lio on Twitter @shamir_lior

21 Jun 202136min

Do We Need Deep Learning in Time Series

Do We Need Deep Learning in Time Series

Shereen Elsayed and Daniela Thyssens, both are PhD Student at Hildesheim University in Germany, come on today to talk about the work "Do We Really Need Deep Learning Models for Time Series Forecasting?"

16 Jun 202129min

Detecting Drift

Detecting Drift

Sam Ackerman, Research Data Scientist at IBM Research Labs in Haifa, Israel, joins us today to talk about his work Detection of Data Drift and Outliers Affecting Machine Learning Model Performance Over Time. Check out Sam's IBM statistics/ML blog at: http://www.research.ibm.com/haifa/dept/vst/ML-QA.shtml

11 Jun 202127min

Darts Library for Time Series

Darts Library for Time Series

Julien Herzen, PhD graduate from EPFL in Switzerland, comes on today to talk about his work with Unit 8 and the development of the Python Library: Darts.

31 Mai 202125min

Forecasting Principles and Practice

Forecasting Principles and Practice

Welcome to Timeseries! Today's episode is an interview with Rob Hyndman, Professor of Statistics at Monash University in Australia, and author of Forecasting: Principles and Practices.

24 Mai 202131min

Prequisites for Time Series

Prequisites for Time Series

Today's experimental episode uses sound to describe some basic ideas from time series. This episode includes lag, seasonality, trend, noise, heteroskedasticity, decomposition, smoothing, feature engineering, and deep learning.

21 Mai 20218min

Populært innen Vitenskap

fastlegen
rekommandert
jss
rss-rekommandert
tingenes-tilstand
sinnsyn
rss-nysgjerrige-norge
villmarksliv
dekodet-2
forskningno
doktor-fives-podcast
rss-paradigmepodden
vett-og-vitenskap-med-gaute-einevoll
pod-britannia
psykopoden
tidlose-historier
diagnose
tomprat-med-gunnar-tjomlid
nevropodden
abid-nadia-skyld-og-skam