Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

Reprogramming Cell Identity through Epigenetic Mechanisms (Vincent Pasque)

In this episode of the Epigenetics Podcast, we talked with Vincent Pasque from KU Leuven about his work on the reprogramming of cell identity through epigenetic mechanisms, particularly during early development and cellular reprogramming.

We begin by tracing Vincent's journey into biology, sparked by early childhood experiences in nature and meaningful encounters with inspiring teachers. His fascination with the complexities of biology crystallized during a pivotal moment while listening to a radio segment on epigenetics in the late '90s, which led him to pursue studies in genetics and biochemistry. This formative path brought him to leading institutions, including the prestigious lab of John Gurdon, where he explored the phenomenon of nuclear reprogramming. Vincent recounts his early experiments that led to the discovery of macro H2A as a barrier to reprogramming, emphasizing the core challenge of erasing somatic cell identity.

As the conversation unfolds, Vincent introduces us to critical findings from his research. He shares how the inactive X chromosome serves as a compelling model to investigate epigenetic regulation, revealing that the dynamics of reprogramming and differentiation are far from simple reversals of development. He highlights the significant differences between male and female iPSCs and how X-linked genes influence DNA methylation and differentiation rates in these cells. The implications of these findings extend beyond developmental biology to inform our understanding of diseases, particularly cancer.

Transitioning to his current work, Vincent describes pioneering advances in characterizing the chromatin-associated proteome during the differentiation of human pluripotent stem cells. The surprising discovery of elevated histone modifications in naïve cells leads to intriguing questions about the barriers to cellular plasticity and the mechanisms by which cells resist alternative fate conversions. The potential applications of this research could reshape our approach to regenerative medicine and therapeutic interventions.

References
  • Pasque V, Gillich A, Garrett N, Gurdon JB. Histone variant macroH2A confers resistance to nuclear reprogramming. The EMBO Journal. 2011 May;30(12):2373-2387. DOI: 10.1038/emboj.2011.144. PMID: 21552206; PMCID: PMC3116279.

  • Jullien, J., Miyamoto, K., Pasque, V., Allen, G. E., Bradshaw, C. R., Garrett, N. J., Halley-Stott, R. P., Kimura, H., Ohsumi, K., & Gurdon, J. B. (2014). Hierarchical Molecular Events Driven by Oocyte-Specific Factors Lead to Rapid and Extensive Reprogramming. Molecular Cell, 55(4), 524–536. https://doi.org/10.1016/j.molcel.2014.06.024

  • Pasque V, Tchieu J, Karnik R, et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell. 2014 Dec;159(7):1681-1697. DOI: 10.1016/j.cell.2014.11.040. PMID: 25525883; PMCID: PMC4282187.

  • Zijlmans DW, Talon I, Verhelst S, et al. Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nature Cell Biology. 2022 Jun;24(6):858-871. DOI: 10.1038/s41556-022-00932-w. PMID: 35697783; PMCID: PMC9203278.

Related Episodes Contact

Episoder(168)

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

In this episode of the Epigenetics Podcast, we talked with Weiwei Dang from Baylor College of Medicine about his work on molecular mechanisms of aging and the role of H3K36me3 and cryptic transcriptio...

7 Mar 202456min

Split-Pool Recognition of Interactions by Tag Extension (SPRITE) (Mitch Guttman)

Split-Pool Recognition of Interactions by Tag Extension (SPRITE) (Mitch Guttman)

In this episode of the Epigenetics Podcast, we talked with Mitch Guttman from California Institute of Technology about his work on characterising the 3D interactions of the genome using Split-Pool Rec...

22 Feb 202454min

MLL Proteins in Mixed-Lineage Leukemia (Yali Dou)

MLL Proteins in Mixed-Lineage Leukemia (Yali Dou)

In this episode of the Epigenetics Podcast, we talked with Yali Dou from Keck School of Medicine of USC about her work on MLL Proteins in Mixed-Lineage Leukemia. To start off this Interview Yali descr...

8 Feb 202436min

Sex-biased Imprinting and DNA Regulatory Landscapes During Reprogramming (Sam Buckberry)

Sex-biased Imprinting and DNA Regulatory Landscapes During Reprogramming (Sam Buckberry)

In this episode of the Epigenetics Podcast, we talked with Sam Buckberry from the Telethon Kids Institute about his work on gene imprinting, sex-biased gene expression, DNA regulatory landscapes, and ...

25 Jan 202438min

BET Proteins and Their Role in Chromosome Folding and Compartmentalization (Kyle Eagen)

BET Proteins and Their Role in Chromosome Folding and Compartmentalization (Kyle Eagen)

In this episode of the Epigenetics Podcast, we talked with Kyle Eagen from Baylor College of Medicine about his work on BET Proteins and their role in chromosome folding and compartmentalization. In t...

11 Jan 202430min

Epigenetic Underpinnings of Human Addiction (Francesca Telese & Jessica Zhou)

Epigenetic Underpinnings of Human Addiction (Francesca Telese & Jessica Zhou)

In this episode of the Epigenetics Podcast, we talked with Francesca Telese from UC San Diego and Jessica Zhou from Cold Spring Harbour about their work on the molecular underpinnings of human addicti...

21 Des 202359min

H3K79 Methylation, DOT1L, and FOXG1 in Neural Development (Tanja Vogel)

H3K79 Methylation, DOT1L, and FOXG1 in Neural Development (Tanja Vogel)

In this episode of the Epigenetics Podcast, we talked with Tanja Vogel from the University Clinics Freiburg about her work on epigenetic modifications in stem cells during central nervous system devel...

30 Nov 202342min

Function of Insulators in 3D Genome Folding (Maria Gambetta)

Function of Insulators in 3D Genome Folding (Maria Gambetta)

In this episode of the Epigenetics Podcast, we talked with Maria Gambetta from the University of Lausanne about her work on the function of insulators in 3D genome folding. Maria Gambetta focuses on i...

16 Nov 202343min

Populært innen Vitenskap

fastlegen
smart-forklart
jss
tingenes-tilstand
villmarksliv
rekommandert
vett-og-vitenskap-med-gaute-einevoll
sinnsyn
forskningno
rss-rekommandert
fjellsportpodden
rss-paradigmepodden
tomprat-med-gunnar-tjomlid
aldring-og-helse-podden
pod-britannia
rss-nysgjerrige-norge
nordnorsk-historie
diagnose
tidlose-historier
rss-overskuddsliv