DataRec Library for Reproducible in Recommend Systems

DataRec Library for Reproducible in Recommend Systems

In this episode of Data Skeptic's Recommender Systems series, host Kyle Polich explores DataRec, a new Python library designed to bring reproducibility and standardization to recommender systems research. Guest Alberto Carlo Maria Mancino, a postdoc researcher from Politecnico di Bari, Italy, discusses the challenges of dataset management in recommendation research—from version control issues to preprocessing inconsistencies—and how DataRec provides automated downloads, checksum verification, and standardized filtering strategies for popular datasets like MovieLens, Last.fm, and Amazon reviews.

The conversation covers Alberto's research journey through knowledge graphs, graph-based recommenders, privacy considerations, and recommendation novelty. He explains why small modifications in datasets can significantly impact research outcomes, the importance of offline evaluation, and DataRec's vision as a lightweight library that integrates with existing frameworks rather than replacing them. Whether you're benchmarking new algorithms or exploring recommendation techniques, this episode offers practical insights into one of the most critical yet overlooked aspects of reproducible ML research.

Episoder(589)

First Order Logic

First Order Logic

Logic is a fundamental of mathematical systems. It's roots are the values true and false and it's power is in what it's rules allow you to prove. Prepositional logic provides it's user variables. This episode gets into First Order Logic, an extension to prepositional logic.

6 Jul 201816min

Blind Spots in Reinforcement Learning

Blind Spots in Reinforcement Learning

An intelligent agent trained in a simulated environment may be prone to making mistakes in the real world due to discrepancies between the training and real-world conditions. The areas where an agent makes mistakes are hard to find, known as "blind spots," and can stem from various reasons. In this week's episode, Kyle is joined by Ramya Ramakrishnan, a PhD candidate at MIT, to discuss the idea "blind spots" in reinforcement learning and approaches to discover them.

29 Jun 201827min

Defending Against Adversarial Attacks

Defending Against Adversarial Attacks

In this week's episode, our host Kyle interviews Gokula Krishnan from ETH Zurich, about his recent contributions to defenses against adversarial attacks. The discussion centers around his latest paper, titled "Defending Against Adversarial Attacks by Leveraging an Entire GAN," and his proposed algorithm, aptly named 'Cowboy.'

22 Jun 201831min

Transfer Learning

Transfer Learning

On a long car ride, Linhda and Kyle record a short episode. This discussion is about transfer learning, a technique using in machine learning to leverage training from one domain to have a head start learning in another domain. Transfer learning has some obvious appealing features. Take the example of an image recognition problem. There are now many widely available models that do general image recognition. Detecting that an image contains a "sofa" is an impressive feat. However, for a furniture company interested in more specific details, this classifier is absurdly general. Should the furniture company build a massive corpus of tagged photos, effectively starting from scratch? Or is there a way they can transfer the learnings from the general task to the specific one. A general definition of transfer learning in machine learning is the use of taking some or all aspects of a pre-trained model as the basis to begin training a new model which a specific and potentially limited dataset.

15 Jun 201818min

Medical Imaging Training Techniques

Medical Imaging Training Techniques

Medical imaging is a highly effective tool used by clinicians to diagnose a wide array of diseases and injuries. However, it often requires exceptionally trained specialists such as radiologists to interpret accurately. In this episode of Data Skeptic, our host Kyle Polich is joined by Gabriel Maicas, a PhD candidate at the University of Adelaide, to discuss machine learning systems that can be used by radiologists to improve their accuracy and speed of diagnosis.

8 Jun 201825min

Kalman Filters

Kalman Filters

Thanks to our sponsor Galvanize A Kalman Filter is a technique for taking a sequence of observations about an object or variable and determining the most likely current state of that object. In this episode, we discuss it in the context of tracking our lilac crowned amazon parrot Yoshi. Kalman filters have many applications but the one of particular interest under our current theme of artificial intelligence is to efficiently update one's beliefs in light of new information. The Kalman filter is based upon the Gaussian distribution. This distribution is described by two parameters: (the mean) and standard deviation. The procedure for updating these values in light of new information has a closed form. This means that it can be described with straightforward formulae and computed very efficiently. You may gain a greater appreciation for Kalman filters by considering what would happen if you could not rely on the Gaussian distribution to describe your posterior beliefs. If determining the probability distribution over the variables describing some object cannot be efficiently computed, then by definition, maintaining the most up to date posterior beliefs can be a significant challenge. Kyle will be giving a talk at Skeptical 2018 in Berkeley, CA on June 10.

1 Jun 201821min

AI in Industry

AI in Industry

There's so much to discuss on the AI side, it's hard to know where to begin. Luckily, Steve Guggenheimer, Microsoft's corporate vice president of AI Business, and Carlos Pessoa, a software engineering manager for the company's Cloud AI Platform, talked to Kyle about announcements related to AI in industry.

25 Mai 201843min

AI in Games

AI in Games

Today's interview is with the authors of the textbook Artificial Intelligence and Games.

18 Mai 201825min

Populært innen Vitenskap

fastlegen
rekommandert
jss
tingenes-tilstand
rss-nysgjerrige-norge
sinnsyn
rss-rekommandert
forskningno
rss-paradigmepodden
dekodet-2
tomprat-med-gunnar-tjomlid
pod-britannia
doktor-fives-podcast
villmarksliv
rss-overskuddsliv
fjellsportpodden
vett-og-vitenskap-med-gaute-einevoll
abid-nadia-skyld-og-skam
nordnorsk-historie
nevropodden