
Building a Recommendation Agent for The North Face with Andrew Guldman - TWiML Talk #239
Today we’re joined by Andrew Guldman, VP of Product Engineering and R&D at Fluid to discuss Fluid XPS, a user experience built to help the casual shopper decide on the best product choices during online retail interactions. We specifically discuss its origins as a product to assist outerwear retailer The North Face. In our conversation, we discuss their use of heat-sink algorithms and graph databases, challenges associated with staying on top of a constantly changing landscape, and more!
14 Mars 201947min

Active Learning for Materials Design with Kevin Tran - TWiML Talk #238
Today we’re joined by Kevin Tran, PhD student at Carnegie Mellon University. In our conversation, we explore the challenges surrounding the creation of renewable energy fuel cells, which is discussed in his recent Nature paper “Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution.” The AI Conference is returning to New York in April and we have one FREE conference pass for a lucky listener! Visit twimlai.com/ainygiveaway to enter!
11 Mars 201933min

Deep Learning in Optics with Aydogan Ozcan - TWiML Talk #237
Today we’re joined by Aydogan Ozcan, Professor of Electrical and Computer Engineering at UCLA, exploring his group's research into the intersection of deep learning and optics, holography and computational imaging. We specifically look at a really interesting project to create all-optical neural networks which work based on diffraction, where the printed pixels of the network are analogous to neurons. We also explore practical applications for their research and other areas of interest.
7 Mars 201942min

Scaling Machine Learning on Graphs at LinkedIn with Hema Raghavan and Scott Meyer - TWiML Talk #236
Today we’re joined by Hema Raghavan and Scott Meyer of LinkedIn to discuss the graph database and machine learning systems that power LinkedIn features such as “People You May Know” and second-degree connections. Hema shares her insight into the motivations for LinkedIn’s use of graph-based models and some of the challenges surrounding using graphical models at LinkedIn’s scale, while Scott details his work on the software used at the company to support its biggest graph databases.
4 Mars 201946min

Safer Exploration in Deep Reinforcement Learning using Action Priors with Sicelukwanda Zwane - TWiML Talk #235
Today we conclude our Black in AI series with Sicelukwanda Zwane, a masters student at the University of Witwatersrand and graduate research assistant at the CSIR, who presented on “Safer Exploration in Deep Reinforcement Learning using Action Priors” at the workshop. In our conversation, we discuss what “safer exploration” means in this sense, the difference between this work and other techniques like imitation learning, and how this fits in with the goal of “lifelong learning.”
1 Mars 201953min

Dissecting the Controversy around OpenAI's New Language Model - TWiML Talk #234
In the inaugural TWiML Live, Sam Charrington is joined by Amanda Askell (OpenAI), Anima Anandkumar (NVIDIA/CalTech), Miles Brundage (OpenAI), Robert Munro (Lilt), and Stephen Merity to discuss the controversial recent release of the OpenAI GPT-2 Language Model. We cover the basics like what language models are and why they’re important, and why this announcement caused such a stir, and dig deep into why the lack of a full release of the model raised concerns for so many.
25 Feb 20191h 5min

Human-Centered Design with Mira Lane - TWiML Talk #233
Today we present the final episode in our AI for the Benefit of Society series, in which we’re joined by Mira Lane, Partner Director for Ethics and Society at Microsoft. Mira and I focus our conversation on the role of culture and human-centered design in AI. We discuss how Mira defines human-centered design, its connections to culture and responsible innovation, and how these ideas can be scalably implemented across large engineering organizations.
22 Feb 201946min

Fairness in Machine Learning with Hanna Wallach - TWiML Talk #232
Today we’re joined by Hanna Wallach, a Principal Researcher at Microsoft Research. Hanna and I really dig into how bias and a lack of interpretability and transparency show up across ML. We discuss the role that human biases, even those that are inadvertent, play in tainting data, and whether deployment of “fair” ML models can actually be achieved in practice, and much more. Hanna points us to a TON of resources to further explore the topic of fairness in ML, which you’ll find at twimlai.com/talk
18 Feb 201948min





















