Kinds of Intelligence w/ Jose Hernandez-Orallo - TWiML Talk #137

Kinds of Intelligence w/ Jose Hernandez-Orallo - TWiML Talk #137

In this episode, I'm joined by Jose Hernandez-Orallo, professor in the department of information systems and computing at Universitat Politècnica de València and fellow at the Leverhulme Centre for the Future of Intelligence, working on the Kinds of Intelligence Project. Jose and I caught up at NIPS last year after the Kinds of Intelligence Symposium that he helped organize there. In our conversation, we discuss the three main themes of the symposium: understanding and identifying the main types of intelligence, including non-human intelligence, developing better ways to test and measure these intelligences, and understanding how and where research efforts should focus to best benefit society. The notes for this show can be found at twimlai.com/talk/137.

Avsnitt(776)

Symbolic and Sub-Symbolic Natural Language Processing with Jonathan Mugan - TWiML Talk #49

Symbolic and Sub-Symbolic Natural Language Processing with Jonathan Mugan - TWiML Talk #49

Like last week’s interview with Bruno Goncalves, this week’s interview was also recorded at the last O’Reilly AI Conference back in New York in June. Also like last week’s show, this week’s is also focused on Natural Language Processing and I think you’ll enjoy it. I’m joined by Jonathan Mugan, co-founder and CEO of Deep Grammar, a company that is building a grammar checker using deep learning and what they call deep symbolic processing. This interview is a great complement to my conversation with Bruno, and we cover a variety of topics from both the sub-symbolic and symbolic schools of NLP, such as attention mechanisms like sequence to sequence, and ontological approaches like WordNet, synsets, FrameNet, and SUMO. You can find the notes for this show at twimlai.com/talk/49

25 Sep 201743min

Word2Vec & Friends with Bruno Gonçalves - TWiML Talk #48

Word2Vec & Friends with Bruno Gonçalves - TWiML Talk #48

This week i'm bringing you an interview from Bruno Goncalves, a Moore-Sloan Data Science Fellow at NYU. As you’ll hear in the interview, Bruno is a longtime listener of the podcast. We were able to connect at the NY AI conference back in June after I noted on a previous show that I was interested in learning more about word2vec. Bruno graciously agreed to come on the show and walk us through an overview of word embeddings, word2vec and related ideas. He provides a great overview of not only word2vec, related NLP concepts such as Skip Gram, Continuous Bag of Words, Node2Vec and TFIDF. Notes for this show can be found at twimlai.com/talk/48.

19 Sep 201732min

Evolutionary Algorithms in Machine Learning with Risto Miikkulainen - TWiML Talk #47

Evolutionary Algorithms in Machine Learning with Risto Miikkulainen - TWiML Talk #47

My guest this week is Risto Miikkulainen, professor of computer science at UT-Austin and vice president of Research at Sentient Technologies. Risto came locked and loaded to discuss a topic that we've received a ton of requests for -- evolutionary algorithms. During our talk we discuss some of the things Sentient is working on in the financial services and retail fields, and we dig into the technology behind it, evolutionary algorithms, which is also the focus of Risto’s research at UT. I really enjoyed this interview and learned a ton, and I’m sure you will too! Notes for this show can be found at twimlai.com/talk/47.

11 Sep 201758min

Agile Machine Learning with Jennifer Prendki - TWiML Talk #46

Agile Machine Learning with Jennifer Prendki - TWiML Talk #46

My guest this week is Jennifer Prendki. That name might sound familiar, as she was one of the great speakers from my Future of Data Summit back in May. At the time, Jennifer was senior data science manager and principal data scientist at Walmart Labs, but she's since moved on to become head of data science at Atlassian. Back at the summit, Jennifer gave an awesome talk on what she calls Data Mixology, the slides for which you can find on the show notes page. My conversation with Jennifer begins with a recap of that talk. After that, we shift our focus to some of the practices she helped develop and implement at Walmart around the measurement and management of machine learning models in production, and more generally, building agile processes and teams for machine learning. The notes for this show can be found at twimlai.com/talk/46

5 Sep 201748min

LSTMs, Plus a Deep Learning History Lesson with Jürgen Schmidhuber - TWiML Talk #44

LSTMs, Plus a Deep Learning History Lesson with Jürgen Schmidhuber - TWiML Talk #44

This week we have a very special interview to share with you! Those of you who’ve been receiving my newsletter for a while might remember that while in Switzerland last month, I had the pleasure of interviewing Jurgen Schmidhuber, in his lab IDSIA, which is the Dalle Molle Institute for Artificial Intelligence Research in Lugano, Switzerland, where he serves as Scientific Director. In addition to his role at IDSIA, Jurgen is also Co-Founder and Chief Scientist of NNaisense, a company that is using AI to build large-scale neural network solutions for “superhuman perception and intelligent automation.” Jurgen is an interesting, accomplished and in some circles controversial figure in the AI community and we covered a lot of very interesting ground in our discussion, so much so that I couldn't truly unpack it all until I had a chance to sit with it after the fact. We talked a bunch about his work on neural networks, especially LSTM’s, or Long Short-Term Memory networks, which are a key innovation behind many of the advances we’ve seen in deep learning and its application over the past few years. Along the way, Jurgen walks us through a deep learning history lesson that spans 50+ years. It was like walking back in time with the 3 eyed raven. I know you’re really going to enjoy this one, and by the way, this is definitely a nerd alert show! For the show notes, visit twimlai.com/talk/44

28 Aug 20171h 3min

Machine Teaching for Better Machine Learning with Mark Hammond - TWiML Talk #43

Machine Teaching for Better Machine Learning with Mark Hammond - TWiML Talk #43

Today’s show, which concludes the first season of the Industrial AI Series, features my interview with Bonsai co-founder and CEO Mark Hammond. I sat down with Mark at Bonsai HQ a few weeks ago and we had a great discussion while I was there. We touched on a ton of subjects throughout this talk, including his starting point in Artificial intelligence, how Bonsai came about & more. Mark also describes the role of what he calls “machine teaching” in delivering practical machine learning solutions, particularly for enterprise or industrial AI use cases. This was one of my favorite conversations, I know you’ll enjoy it! The notes for this show can be found at twimlai.com/talk/43

21 Aug 20171h 5min

Marrying Physics-Based and Data-Driven ML Models with Josh Bloom - TWiML Talk #42

Marrying Physics-Based and Data-Driven ML Models with Josh Bloom - TWiML Talk #42

Recently I had a chance to catch up with a friend and friend of the show, Josh Bloom, vice president of data & analytics at GE Digital. If you’ve been listening for a while, you already know that Josh was on the show around this time last year, just prior to the acquisition of his company Wise.io by GE Digital. It was great to catch up with Josh on his journey within GE, and the work his team is doing around Industrial AI, now that they’re part of the one of the world’s biggest industrial companies. We talk about some really interesting things in this show, including how his team is using autoencoders to create training datasets, and how they incorporate knowledge of physics and physical systems into their machine learning models. The notes for this show can be found at twimlai.com/talk/42.

14 Aug 201752min

Data Pipelines at Zymergen with Airflow with Erin Shellman - TWiML Talk #41

Data Pipelines at Zymergen with Airflow with Erin Shellman - TWiML Talk #41

The show you’re listening to features my interview with Erin Shellman. Erin is a statistician and data science manager with Zymergen, a company using robots and machine learning to engineer better microbes. If you’re wondering what exactly that means, I was too, and we talk about it in the interview. Our conversation focuses on Zymergen’s use of Apache Airflow, an open-source data management platform originating at Airbnb, that Erin and her team uses to create reliable, repeatable data pipelines for its machine learning applications. A quick note before we dive in: As is the case with my other field recordings, there’s a bit of unavoidable background noise in this interview. Sorry about that! The show notes for this episode can be found at https://twimlai.com/talk/41

5 Aug 201735min

Populärt inom Politik & nyheter

aftonbladet-krim
svenska-fall
motiv
p3-krim
fordomspodden
rss-krimstad
flashback-forever
rss-viva-fotboll
blenda-2
aftonbladet-daily
rss-sanning-konsekvens
grans
rss-vad-fan-hande
dagens-eko
olyckan-inifran
spar
svd-nyhetsartiklar
rss-expressen-dok
rss-frandfors-horna
rss-klubbland-en-podd-mest-om-frolunda