Invariance, Geometry and Deep Neural Networks with Pavan Turaga - #386

Invariance, Geometry and Deep Neural Networks with Pavan Turaga - #386

We continue our CVPR coverage with today’s guest, Pavan Turaga, Associate Professor at Arizona State University. Pavan gave a keynote presentation at the Differential Geometry in CV and ML Workshop, speaking on Revisiting Invariants with Geometry and Deep Learning. We go in-depth on Pavan’s research on integrating physics-based principles into computer vision. We also discuss the context of the term “invariant,” and Pavan contextualizes this work in relation to Hinton’s similar Capsule Network res

Avsnitt(775)

Edutainment for AI and AWS PartyRock with Mike Miller - #661

Edutainment for AI and AWS PartyRock with Mike Miller - #661

Today we’re joined by Mike Miller, director of product at AWS responsible for the company’s “edutainment” products. In our conversation with Mike, we explore AWS PartyRock, a no-code generative AI app builder that allows users to easily create fun and shareable AI applications by selecting a model, chaining prompts together, and linking different text, image, and chatbot widgets together. Additionally, we discuss some of the previous tools Mike’s team has delivered at the intersection of developer education and entertainment, including DeepLens, a computer vision hardware device, DeepRacer, a programmable vehicle that uses reinforcement learning to navigate a track, and lastly, DeepComposer, a generative AI model that transforms musical inputs and creates accompanying compositions. The complete show notes for this episode can be found at twimlai.com/go/661.

18 Dec 202329min

Data, Systems and ML for Visual Understanding with Cody Coleman - #660

Data, Systems and ML for Visual Understanding with Cody Coleman - #660

Today we’re joined by Cody Coleman, co-founder and CEO of Coactive AI. In our conversation with Cody, we discuss how Coactive has leveraged modern data, systems, and machine learning techniques to deliver its multimodal asset platform and visual search tools. Cody shares his expertise in the area of data-centric AI, and we dig into techniques like active learning and core set selection, and how they can drive greater efficiency throughout the machine learning lifecycle. We explore the various ways Coactive uses multimodal embeddings to enable their core visual search experience, and we cover the infrastructure optimizations they’ve implemented in order to scale their systems. We conclude with Cody’s advice for entrepreneurs and engineers building companies around generative AI technologies. The complete show notes for this episode can be found at twimlai.com/go/660.

14 Dec 202338min

Patterns and Middleware for LLM Applications with Kyle Roche - #659

Patterns and Middleware for LLM Applications with Kyle Roche - #659

Today we’re joined by Kyle Roche, founder and CEO of Griptape to discuss patterns and middleware for LLM applications. We dive into the emerging patterns for developing LLM applications, such as off prompt data—which allows data retrieval without compromising the chain of thought within language models—and pipelines, which are sequential tasks that are given to LLMs that can involve different models for each task or step in the pipeline. We also explore Griptape, an open-source, Python-based middleware stack that aims to securely connect LLM applications to an organization’s internal and external data systems. We discuss the abstractions it offers, including drivers, memory management, rule sets, DAG-based workflows, and a prompt stack. Additionally, we touch on common customer concerns such as privacy, retraining, and sovereignty issues, and several use cases that leverage role-based retrieval methods to optimize human augmentation tasks. The complete show notes for this episode can be found at twimlai.com/go/659.

11 Dec 202335min

AI Access and Inclusivity as a Technical Challenge with Prem Natarajan - #658

AI Access and Inclusivity as a Technical Challenge with Prem Natarajan - #658

Today we’re joined by Prem Natarajan, chief scientist and head of enterprise AI at Capital One. In our conversation, we discuss AI access and inclusivity as technical challenges and explore some of Prem and his team’s multidisciplinary approaches to tackling these complexities. We dive into the issues of bias, dealing with class imbalances, and the integration of various research initiatives to achieve additive results. Prem also shares his team’s work on foundation models for financial data curation, highlighting the importance of data quality and the use of federated learning, and emphasizing the impact these factors have on the model performance and reliability in critical applications like fraud detection. Lastly, Prem shares his overall approach to tackling AI research in the context of a banking enterprise, including prioritizing mission-inspired research aiming to deliver tangible benefits to customers and the broader community, investing in diverse talent and the best infrastructure, and forging strategic partnerships with a variety of academic labs. The complete show notes for this episode can be found at twimlai.com/go/658.

4 Dec 202341min

Building LLM-Based Applications with Azure OpenAI with Jay Emery - #657

Building LLM-Based Applications with Azure OpenAI with Jay Emery - #657

Today we’re joined by Jay Emery, director of technical sales & architecture at Microsoft Azure. In our conversation with Jay, we discuss the challenges faced by organizations when building LLM-based applications, and we explore some of the techniques they are using to overcome them. We dive into the concerns around security, data privacy, cost management, and performance as well as the ability and effectiveness of prompting to achieve the desired results versus fine-tuning, and when each approach should be applied. We cover methods such as prompt tuning and prompt chaining, prompt variance, fine-tuning, and RAG to enhance LLM output along with ways to speed up inference performance such as choosing the right model, parallelization, and provisioned throughput units (PTUs). In addition to that, Jay also shared several intriguing use cases describing how businesses use tools like Azure Machine Learning prompt flow and Azure ML AI Studio to tailor LLMs to their unique needs and processes. The complete show notes for this episode can be found at twimlai.com/go/657.

28 Nov 202343min

Visual Generative AI Ecosystem Challenges with Richard Zhang - #656

Visual Generative AI Ecosystem Challenges with Richard Zhang - #656

Today we’re joined by Richard Zhang, senior research scientist at Adobe Research. In our conversation with Richard, we explore the research challenges that arise when regarding visual generative AI from an ecosystem perspective, considering the disparate needs of creators, consumers, and contributors. We start with his work on perceptual metrics and the LPIPS paper, which allow us to better align human perception and computer vision and which remain used in contemporary generative AI applications such as stable diffusion, GANs, and latent diffusion. We look at his work creating detection tools for fake visual content, highlighting the importance of generalization of these detection methods to new, unseen models. Lastly, we dig into his work on data attribution and concept ablation, which aim to address the challenging open problem of allowing artists and others to manage their contributions to generative AI training data sets. The complete show notes for this episode can be found at twimlai.com/go/656.

20 Nov 202340min

Deploying Edge and Embedded AI Systems with Heather Gorr - #655

Deploying Edge and Embedded AI Systems with Heather Gorr - #655

Today we’re joined by Heather Gorr, principal MATLAB product marketing manager at MathWorks. In our conversation with Heather, we discuss the deployment of AI models to hardware devices and embedded AI systems. We explore factors to consider during data preparation, model development, and ultimately deployment, to ensure a successful project. Factors such as device constraints and latency requirements which dictate the amount and frequency of data flowing onto the device are discussed, as are modeling needs such as explainability, robustness and quantization; the use of simulation throughout the modeling process; the need to apply robust verification and validation methodologies to ensure safety and reliability; and the need to adapt and apply MLOps techniques for speed and consistency. Heather also shares noteworthy anecdotes about embedded AI deployments in industries including automotive and oil & gas. The complete show notes for this episode can be found at twimlai.com/go/655.

13 Nov 202338min

AI Sentience, Agency and Catastrophic Risk with Yoshua Bengio - #654

AI Sentience, Agency and Catastrophic Risk with Yoshua Bengio - #654

Today we’re joined by Yoshua Bengio, professor at Université de Montréal. In our conversation with Yoshua, we discuss AI safety and the potentially catastrophic risks of its misuse. Yoshua highlights various risks and the dangers of AI being used to manipulate people, spread disinformation, cause harm, and further concentrate power in society. We dive deep into the risks associated with achieving human-level competence in enough areas with AI, and tackle the challenges of defining and understanding concepts like agency and sentience. Additionally, our conversation touches on solutions to AI safety, such as the need for robust safety guardrails, investments in national security protections and countermeasures, bans on systems with uncertain safety, and the development of governance-driven AI systems. The complete show notes for this episode can be found at twimlai.com/go/654.

6 Nov 202348min

Populärt inom Politik & nyheter

aftonbladet-krim
svenska-fall
motiv
p3-krim
fordomspodden
blenda-2
rss-viva-fotboll
rss-krimstad
flashback-forever
aftonbladet-daily
rss-sanning-konsekvens
rss-vad-fan-hande
rss-krimreportrarna
rss-frandfors-horna
dagens-eko
sydsvenskan-dok
olyckan-inifran
rss-flodet
rss-svalan-krim
krimmagasinet