
Intelligent Infrastructure Management with Pankaj Goyal & Rochna Dhand - TWiML Talk #258
Today we're joined by Pankaj Goyal and Rochna Dhand, to discuss HPE InfoSight. In our conversation, Pankaj gives a look into how HPE as a company views AI, from their customers to the future of AI at HPE through investment. Rocha details the role of HPE’s Infosight in deploying AI operations at an enterprise level, including a look at where it fits into the infrastructure for their current customer base, along with a walkthrough of how InfoSight is deployed in a real-world use case.
29 Apr 201944min

Organizing for Successful Data Science at Stitch Fix with Eric Colson - TWiML Talk #257
Today we’re joined by Eric Colson, Chief Algorithms Officer at Stitch Fix, whose presentation at the Strata Data conference explored “How to make fewer bad decisions.” Our discussion focuses in on the three key organizational principles for data science teams that he’s developed while at Stitch Fix. Along the way, we also talk through various roles data science plays, exploring a few of the 800+ algorithms in use at the company spanning recommendations, inventory management, demand forecasting, a
26 Apr 201952min

End-to-End Data Science to Drive Business Decisions at LinkedIn with Burcu Baran - TWiML Talk #256
In this episode of our Strata Data conference series, we’re joined by Burcu Baran, Senior Data Scientist at LinkedIn. At Strata, Burcu, along with a few members of her team, delivered the presentation “Using the full spectrum of data science to drive business decisions,” which outlines how LinkedIn manages their entire machine learning production process. In our conversation, Burcu details each phase of the process, including problem formulation, monitoring features, A/B testing and more.
24 Apr 201948min

Learning with Limited Labeled Data with Shioulin Sam - TWiML Talk #255
Today we’re joined by Shioulin Sam, Research Engineer with Cloudera Fast Forward Labs. Shioulin and I caught up to discuss the newest report to come out of CFFL, “Learning with Limited Label Data,” which explores active learning as a means to build applications requiring only a relatively small set of labeled data. We start our conversation with a review of active learning and some of the reasons why it’s recently become an interesting technology for folks building systems based on deep learning
22 Apr 201944min

cuDF, cuML & RAPIDS: GPU Accelerated Data Science with Paul Mahler - TWiML Talk #254
Today we're joined by Paul Mahler, senior data scientist and technical product manager for ML at NVIDIA. In our conversation, Paul and I discuss NVIDIA's RAPIDS open source project, which aims to bring GPU acceleration to traditional data science workflows and ML tasks. We dig into the various subprojects like cuDF and cuML that make up the RAPIDS ecosystem, as well as the role of lower-level libraries like mlprims and the relationship to other open-source projects like Scikit-learn, XGBoost and Dask.
19 Apr 201938min

Edge AI for Smart Manufacturing with Trista Chen - TWiML Talk #253
Today we’re joined by Trista Chen, chief scientist of machine learning at Inventec, who spoke on “Edge AI in Smart Manufacturing: Defect Detection and Beyond” at GTC. In our conversation, we discuss the challenges that Industry 4.0 initiatives aim to address and dig into a few of the various use cases she’s worked on, such as the deployment of ML in an industrial setting to perform various tasks. We also discuss the challenges associated with estimating the ROI of industrial AI projects.
18 Apr 201938min

Machine Learning for Security and Security for Machine Learning with Nicole Nichols - TWiML Talk #252
Today we’re joined by Nicole Nichols, a senior research scientist at the Pacific Northwest National Lab. We discuss her recent presentation at GTC, which was titled “Machine Learning for Security, and Security for Machine Learning.” We explore two use cases, insider threat detection, and software fuzz testing, discussing the effectiveness of standard and bidirectional RNN language models for detecting malicious activity, the augmentation of software fuzzing techniques using deep learning, and much mor
16 Apr 201941min

Domain Adaptation and Generative Models for Single Cell Genomics with Gerald Quon - TWiML Talk #251
Today we’re joined by Gerald Quon, assistant professor at UC Davis. Gerald presented his work on Deep Domain Adaptation and Generative Models for Single Cell Genomics at GTC this year, which explores single cell genomics as a means of disease identification for treatment. In our conversation, we discuss how he uses deep learning to generate novel insights across diseases, the different types of data that was used, and the development of ‘nested’ Generative Models for single cell measurement.
15 Apr 201932min





















