Data Governance for Data Science with Adam Wood - #578

Data Governance for Data Science with Adam Wood - #578

Today we’re joined by Adam Wood, Director of Data Governance and Data Quality at Mastercard. In our conversation with Adam, we explore the challenges that come along with data governance at a global scale, including dealing with regional regulations like GDPR and federating records at scale. We discuss the role of feature stores in keeping track of data lineage and how Adam and his team have dealt with the challenges of metadata management, how large organizations like Mastercard are dealing with enabling feature reuse, and the steps they take to alleviate bias, especially in scenarios like acquisitions. Finally, we explore data quality for data science and why Adam sees it as an encouraging area of growth within the company, as well as the investments they’ve made in tooling around data management, catalog, feature management, and more. The complete show notes for this episode can be found at twimlai.com/go/578

Avsnitt(777)

Trends in Deep Reinforcement Learning with Kamyar Azizzadenesheli - #560

Trends in Deep Reinforcement Learning with Kamyar Azizzadenesheli - #560

Today we’re joined by Kamyar Azizzadenesheli, an assistant professor at Purdue University, to close out our AI Rewind 2021 series! In this conversation, we focused on all things deep reinforcement learning, starting with a general overview of the direction of the field, and though it might seem to be slowing, thats just a product of the light being shined constantly on the CV and NLP spaces. We dig into themes like the convergence of RL methodology with both robotics and control theory, as well as a few trends that Kamyar sees over the horizon, such as self-supervised learning approaches in RL. We also talk through Kamyar’s predictions for RL in 2022 and beyond. This was a fun conversation, and I encourage you to look through all the great resources that Kamyar shared on the show notes page at twimlai.com/go/560!

21 Feb 20221h 17min

Deep Reinforcement Learning at the Edge of the Statistical Precipice with Rishabh Agarwal - #559

Deep Reinforcement Learning at the Edge of the Statistical Precipice with Rishabh Agarwal - #559

Today we’re joined by Rishabh Agarwal, a research scientist at Google Brain in Montreal. In our conversation with Rishabh, we discuss his recent paper Deep Reinforcement Learning at the Edge of the Statistical Precipice, which won an outstanding paper award at the most recent NeurIPS conference. In this paper, Rishabh and his coauthors call for a change in how deep RL performance is reported on benchmarks when using only a few runs, acknowledging that typically, DeepRL algorithms are evaluated by the performance on a large suite of tasks. Using the Atari 100k benchmark, they found substantial disparities in the conclusions from point estimates alone versus statistical analysis. We explore the reception of this paper from the research community, some of the more surprising results, what incentives researchers have to implement these types of changes in self-reporting when publishing, and much more. The complete show notes for this episode can be found at twimlai.com/go/559

14 Feb 202251min

Designing New Energy Materials with Machine Learning with Rafael Gomez-Bombarelli - #558

Designing New Energy Materials with Machine Learning with Rafael Gomez-Bombarelli - #558

Today we’re joined by Rafael Gomez-Bombarelli, an assistant professor in the department of material science and engineering at MIT. In our conversation with Rafa, we explore his goal of ​​fusing machine learning and atomistic simulations for designing materials, a topic he spoke about at the recent SigOpt AI & HPC Summit. We discuss the two ways in which he thinks of material design, virtual screening and inverse design, as well as the unique challenges each technique presents. We also talk through the use of generative models for simulation, the type of training data necessary for these tasks, and if he’s building hand-coded simulations vs existing packages or tools. Finally, we explore the dynamic relationship between simulation and modeling and how the results of one drive the others efforts, and how hyperparameter optimization gets incorporated into the various projects. The complete show notes for this episode can be found at twimlai.com/go/558

7 Feb 202253min

Differentiable Programming for Oceanography with Patrick Heimbach - #557

Differentiable Programming for Oceanography with Patrick Heimbach - #557

Today we’re joined by Patrick Heimbach, a professor at the University of Texas working at the intersection of ML and oceanography. In our conversation with Patrick, we explore some of the challenges of computational oceanography, the potential use cases for machine learning in this field, as well as how it can be used to support scientists in solving simulation problems, and the role of differential programming and how it is expressed in his work.  The complete show notes for this episode can be found at twimlai.com/go/557

31 Jan 202234min

Trends in Machine Learning & Deep Learning with Zachary Lipton - #556

Trends in Machine Learning & Deep Learning with Zachary Lipton - #556

Today we continue our AI Rewind 2021 series joined by a friend of the show, assistant professor at Carnegie Mellon University, and AI Rewind veteran, Zack Lipton! In our conversation with Zack, we touch on recurring themes like “NLP Eating AI” and the recent slowdown in innovation in the field, the redistribution of resources across research problems, and where the opportunities for real breakthroughs lie. We also discuss problems facing the current peer-review system, notable research from last year like the introduction of the WILDS library, and the evolution of problems (and potential solutions) in fairness, bias, and equity. Of course, we explore some of the use cases and application areas that made notable progress in 2021, what Zack is looking forward to in 2022 and beyond, and much more! The complete show notes for this episode can be found at twimlai.com/go/556

27 Jan 20221h 8min

Solving the Cocktail Party Problem with Machine Learning, w/ ‪Jonathan Le Roux - #555

Solving the Cocktail Party Problem with Machine Learning, w/ ‪Jonathan Le Roux - #555

Today we’re joined by Jonathan Le Roux, a senior principal research scientist at Mitsubishi Electric Research Laboratories (MERL). At MERL, Jonathan and his team are focused on using machine learning to solve the “cocktail party problem”, focusing on not only the separation of speech from noise, but also the separation of speech from speech. In our conversation with Jonathan, we focus on his paper The Cocktail Fork Problem: Three-Stem Audio Separation For Real-World Soundtracks, which looks to separate and enhance a complex acoustic scene into three distinct categories, speech, music, and sound effects. We explore the challenges of working with such noisy data, the model architecture used to solve this problem, how ML/DL fits into solving the larger cocktail party problem, future directions for this line of research, and much more! The complete show notes for this episode can be found at twimlai.com/go/555

24 Jan 202235min

Machine Learning for Earthquake Seismology with Karianne Bergen - #554

Machine Learning for Earthquake Seismology with Karianne Bergen - #554

Today we’re joined by Karianne Bergen, an assistant professor at Brown University. In our conversation with Karianne, we explore her work at the intersection of earthquake seismology and machine learning, where she’s working on interpretable data classification for seismology. We discuss some of the challenges that present themselves when trying to solve this problem, and the state of applying machine learning to seismological events and earth sciences. Karianne also shares her thoughts on the different relationships that computer scientists and natural scientists have with machine learning, and how to bridge that gap to create tools that work broadly for all scientists. The complete show notes for this episode can be found at twimlai.com/go/554

20 Jan 202235min

The New DBfication of ML/AI with Arun Kumar - #553

The New DBfication of ML/AI with Arun Kumar - #553

Today we’re joined by Arun Kumarm, an associate professor at UC San Diego. We had the pleasure of catching up with Arun prior to the Workshop on Databases and AI at NeurIPS 2021, where he delivered the talk “The New DBfication of ML/AI.” In our conversation, we explore this “database-ification” of machine learning, a concept analogous to the transformation of relational SQL computation. We discuss the relationship between the ML and database fields and how the merging of the two could have positive outcomes for the end-to-end ML workflow, and a few tools that his team has developed, Cerebro, a tool for reproducible model selection, and SortingHat, a tool for automating data prep, and how tools like these and others affect Arun’s outlook on the future of machine learning platforms and MLOps. The complete show notes for this episode can be found at twimlai.com/go/553

17 Jan 202246min

Populärt inom Politik & nyheter

svenska-fall
aftonbladet-krim
motiv
p3-krim
flashback-forever
fordomspodden
rss-viva-fotboll
aftonbladet-daily
rss-krimstad
rss-sanning-konsekvens
rss-vad-fan-hande
olyckan-inifran
spar
blenda-2
politiken
dagens-eko
rss-frandfors-horna
rss-krimreportrarna
rss-expressen-dok
krimmagasinet