Understanding Collective Insect Communication with ML, w/ Orit Peleg - #590

Understanding Collective Insect Communication with ML, w/ Orit Peleg - #590

Today we’re joined by Orit Peleg, an assistant professor at the University of Colorado, Boulder. Orit’s work focuses on understanding the behavior of disordered living systems, by merging tools from physics, biology, engineering, and computer science. In our conversation, we discuss how Orit found herself exploring problems of swarming behaviors and their relationship to distributed computing system architecture and spiking neurons. We look at two specific areas of research, the first focused on the patterns observed in firefly species, how the data is collected, and the types of algorithms used for optimization. Finally, we look at how Orit’s research with fireflies translates to a completely different insect, the honeybee, and what the next steps are for investigating these and other insect families. The complete show notes for this episode can be found at twimlai.com/go/590

Avsnitt(777)

Natural Language Processing at StockTwits with Garrett Hoffman - TWiML Talk #194

Natural Language Processing at StockTwits with Garrett Hoffman - TWiML Talk #194

In this episode, we’re joined by Garrett Hoffman, Director of Data Science at Stocktwits. Stocktwits is a social network for the investing community which has its roots in the use of the $cashtag on Twitter. In our conversation, we discuss applications such as Stocktwits’ own use of “social sentiment graphs” built on multilayer LSTM networks to gauge community sentiment about certain stocks in real time, as well as the more general use of natural language processing for generating trading ideas.

25 Okt 201850min

Advanced Reinforcement Learning & Data Science for Social Impact with Vukosi Marivate - TWiML Talk #193

Advanced Reinforcement Learning & Data Science for Social Impact with Vukosi Marivate - TWiML Talk #193

In the final episode of our Deep Learning Indaba series, we speak with Vukosi Marivate, Chair of Data Science at the University of Pretoria and a co-organizer of the Indaba. My conversation with Vukosi falls into two distinct parts, his PhD research in reinforcement learning, and his current research, which falls under the banner of data science with social impact. We discuss several advanced RL scenarios, along with several applications he is currently exploring in areas like public safety and energy.

23 Okt 201846min

AI Ethics, Strategic Decisioning and Game Theory with Osonde Osoba - TWiML Talk #192

AI Ethics, Strategic Decisioning and Game Theory with Osonde Osoba - TWiML Talk #192

In this episode of our Deep Learning Indaba Series, we’re joined by Osonde Osoba, Engineer at RAND Corporation. Osonde and I spoke on the heels of the Indaba, where he presented on AI Ethics and Policy. We discuss his framework-based approach for evaluating ethical issues and how to build an intuition for where ethical flashpoints may exist in these discussions. We also discuss Osonde’s own model development research, including the application of machine learning to strategic decisions and game theor

18 Okt 201847min

Acoustic Word Embeddings for Low Resource Speech Processing with Herman Kamper - TWiML Talk #191

Acoustic Word Embeddings for Low Resource Speech Processing with Herman Kamper - TWiML Talk #191

In this episode of our Deep Learning Indaba Series, we’re joined by Herman Kamper, lecturer at Stellenbosch University in SA and a co-organizer of the Indaba. We discuss his work on limited- and zero-resource speech recognition, how those differ from regular speech recognition, and the tension between linguistic and statistical methods in this space. We also dive into the specifics of the methods being used and developed in Herman’s lab.

16 Okt 20181h 1min

Learning Representations for Visual Search with Naila Murray - TWiML Talk #190

Learning Representations for Visual Search with Naila Murray - TWiML Talk #190

In this episode of our Deep Learning Indaba series, we’re joined by Naila Murray, Senior Research Scientist and Group Lead in the computer vision group at Naver Labs Europe. Naila presented at the Indaba on computer vision. In this discussion, we explore her work on visual attention, including why visual attention is important and the trajectory of work in the field over time. We also discuss her paper  “Generalized Max Pooling,” and much more! For the complete show notes, visit twimlai.com/tal

12 Okt 201841min

Evaluating Model Explainability Methods with Sara Hooker - TWiML Talk #189

Evaluating Model Explainability Methods with Sara Hooker - TWiML Talk #189

In this, the first episode of the Deep Learning Indaba series, we’re joined by Sara Hooker, AI Resident at Google Brain. I spoke with Sara in the run-up to the Indaba about her work on interpretability in deep neural networks. We discuss what interpretability means and nuances like the distinction between interpreting model decisions vs model function. We also talk about the relationship between Google Brain and the rest of the Google AI landscape and the significance of the Google AI Lab in Accra, Ghana.

10 Okt 20181h 3min

Graph Analytic Systems with Zachary Hanif - TWiML Talk #188

Graph Analytic Systems with Zachary Hanif - TWiML Talk #188

In this, the final episode of our Strata Data Conference series, we’re joined by Zachary Hanif, Director of Machine Learning at Capital One’s Center for Machine Learning. We start our discussion with a look at the role of graph analytics in the ML toolkit, including some important application areas for graph-based systems. Zach gives us an overview of the different ways to implement graph analytics, including what he calls graphical processing engines which excel at handling large datasets, & much m

8 Okt 201854min

Diversification in Recommender Systems with Ahsan Ashraf - TWiML Talk #187

Diversification in Recommender Systems with Ahsan Ashraf - TWiML Talk #187

In this episode of our Strata Data conference series, we’re joined by Ahsan Ashraf, data scientist at Pinterest. We discuss his presentation, “Diversification in recommender systems: Using topical variety to increase user satisfaction,” covering the experiments his team ran to explore the impact of diversification in user’s boards, the methodology his team used to incorporate variety into the Pinterest recommendation system and much more! The show notes can be found at https://twimlai.com/talk/18

4 Okt 201844min

Populärt inom Politik & nyheter

svenska-fall
aftonbladet-krim
motiv
p3-krim
flashback-forever
fordomspodden
rss-viva-fotboll
aftonbladet-daily
rss-krimstad
rss-sanning-konsekvens
rss-vad-fan-hande
olyckan-inifran
spar
blenda-2
politiken
dagens-eko
rss-frandfors-horna
rss-krimreportrarna
rss-expressen-dok
krimmagasinet